Generalized Twin primes theorem

Dénes, Tamás mathematician Email: tdenest@freemail.hu

Abstract

The Symmetric prime number theorem proof in [Dénes 2017] states, that there exists a symmetric prime pair (p, q) for any natural number $N \ge 4$, for which $p = N - m_N$ and

$$q = N + m_N$$
, and for which that is true $m_N = \frac{q - p}{2}$ and $N = \frac{q + p}{2}$.

Now we prove that for every m_N natural number there are infinite many symmetric prime pair (*Generalized Twin primes theorem*). Applied this proof for $m_N = 1$, we just got precisely the proof of the Twin primes conjecture, so thereafter we can called *Twin primes theorem*. The proof of the basic theorem in this paper is based on the *Complementary Prime Sieve theorem* (see *CPS* in [Dénes 2001]). Due to this theorem, for any N=6k+1 type natural number are composite iff one of the following is fulfilled: k=6uv+u+v or k=6uv-u-v (u and v are natural numbers). Based on this theorem, we prove with an indirect proof to the *Generalized Twin primes theorem*.

LEMMA 1.

Any two prime numbers differ and their sum is even, so if q>p>2 are prime numbers, that there are the $m_N=\frac{q-p}{2}$ and $N=\frac{q+p}{2}$ natural numbers.

Proof

Any prime number greater than 2 is odd. So, if

- (1) $p = 2k + 1 \rangle 2$ prime number (k natural number)
- (2) $q = 2l + 1 \rangle p$ prime number (*l* natural number)

then

(3)
$$\frac{q-p}{2} = \frac{2l+1-2k-1}{2} = l+k$$

(4)
$$\frac{q+p}{2} = \frac{2l+1+2k+1}{2} = l+k+1$$
 Q.E.D.

From the Lema 1. follows the reverse of the *Dénes-type Symmetric prime number theorem* (see [Dénes 2017]), ie the following Theorem 1. is true.

THEOREM 1.

Let two prime numbers q>p>2, then there are $m_N=\frac{q-p}{2}$ and $N=\frac{q+p}{2}$ natural numbers, for which are valid $p=N-m_N$ and $q=N+m_N$.

The Symmetric prime number theorem proven in [Dénes 2017] states, that there exists a symmetric prime pair (p, q) for any natural number $N \ge 4$.

Now, the question is: are there a $2m_N$ distence symmetric prime pair for every m_N natural number? This is proved in the following Theorem 2.

THEOREM 2.

For any m_N natural number there exists at least one q>p symmetric prime pair to which is fulfilled, that $q=p+2m_N$.

Proof (indirect)

Suppose there is an $m_N = c$ natural number for which there is no p and q symmetric prime pair corresponding to the condition of this theorem. In this case, based on the *Complementary Prime Sieve theorem* (see Theorem 2. in [Dénes 2001]) for any prime number p, one of the following q natural numbers may be associated, because q is not a prime:

(5)
$$q = 6r - 1 = p + 2c$$
 and $r = 6uv + u - v$ $(u = 1, 2, 3, ...), (v = 1, 2, 3, ...)$

(6)
$$q = 6r - 1 = p + 2c$$
 and $r = 6uv - u + v$ $(u = 1, 2, 3, ...), (v = 1, 2, 3, ...)$

(7)
$$q = 6r + 1 = p + 2c$$
 and $r = 6uv + u + v$ $(u = 1, 2, 3, ...), (v = 1, 2, 3, ...)$

(8)
$$q = 6r + 1 = p + 2c$$
 and $r = 6uv - u - v$ $(u = 1, 2, 3, ...), (v = 1, 2, 3, ...)$

For the p prime we get the following formulas from the cases (5)-(8), one of which must be satisfied for every u, v natural number:

(9)
$$(5) \Rightarrow p = 6r - 1 - 2c = 6(6uv + u - v) - 1 - 2c$$

(10)
$$(6) \Rightarrow p = 6r - 1 - 2c = 6(6uv - u + v) - 1 - 2c$$

(11)
$$(7) \Rightarrow p = 6r + 1 - 2c = 6(6uv + u + v) + 1 - 2c$$

(12)
$$(8) \Rightarrow p = 6r + 1 - 2c = 6(6uv - u - v) + 1 - 2c$$

We show that if u=v then there exists a u natural number for which p in (9)-(12) is a composit number. But this contradicts the condition of the theorem, according to which p is a prime number.

(13) If
$$u = v = \frac{c+1}{6}$$
, then (9),(10) \Rightarrow

$$\Rightarrow p = 6(6u^2) - 1 - 2c = 6\left(6\frac{(c+1)^2}{6^2}\right) - 1 - 2c = (c+1)^2 - 1 - 2c = c^2$$

$$If \ u = v = \frac{c - 1}{6}, then \ (11) \Rightarrow$$

$$\Rightarrow p = 6(6u^2 + 2u) + 1 - 2c = 6\left(\frac{6(c - 1)^2}{6^2} + \frac{2(c - 1)}{6}\right) + 1 - 2c =$$

$$= (c - 1)^2 + 2(c - 1) + 1 - 2c = (c - 1)^2 - 1 = (c - 1 - 1)(c - 1 + 1) = (c - 2)c$$

Q.E.D.

Dénes, Tamás mathematician

(15) If $u = v = \frac{c+1}{6}$, then (12) \Rightarrow $\Rightarrow p = 6(6u^2 - 2u) + 1 - 2c = 6\left(\frac{6(c+1)^2}{6^2} - \frac{2(c+1)}{6}\right) + 1 - 2c =$ $= (c+1)^2 - 2(c+1) + 1 - 2c = c^2 + 2c + 1 - 2c - 2 + 1 - 2c = c^2 - 2c = (c-2)c$

The $u = v = \frac{c+1}{6}$ condition in (13) and (15) is always fulfilled if c=6s-1, and the $u = v = \frac{c-1}{6}$ condition in (14) is fulfilled if c=6s+1 (s=1,2,3,...)

A few examples of the Theorem 2. are shown in Tables 1-5.

Table 1.

p	q=p+4
3	7
7	11
13	17
19	23
	•••
349	353
	•••
1.579	1.583
	•••
1.019.173	1.019.177
10.082.623	10.082.627
15.484.243	15.484.247

Table 2.

p	<i>q</i> = <i>p</i> +6
5	11
7	13
11	17
13	19
17	23
•••	•••
563	569
•••	•••
1.601	1.607
•••	•••
1.099.621	1.099.627
•••	•••
10.781.861	10.781.867
15.485.843	15.485.849
	•••

Table 3.

Email: tdenest@freemail.hu

p	q=p+8
3	11
5	13
11	19
23	31
29	37
•••	•••
449	457
•••	•••
1.571	1.579
•••	
1.000.151	1.000.159
•••	•••
10.000.349	10.000.357
15.416.699	15.416.707

Table 4.

p	q=p+10
3	13
7	17
13	23
19	29
73	83
433	443
751	761
1.153	1.163
10.000.759	10.000.769
•••	
13.985.341	13.985.351
15.484.549	15.484.559
444.333.973	444.333.983
888.889.501	888.889.511

Table 5.

p	<i>q=p+100</i>
3	103
7	107
13	113
31	131
487	587
1.723	1.823
1.000.033	1.000.133
10.000.591	10.000.691
15.485.341	15.485.441
444.333.313	444.333.413
	•••
888.889.501	888.889.601

Since $m_N=1$ for the p and $q=p+2m_N$ symmetric prime pairs are precisely the twin primes, so according to the Theorem 2. we can say the following Theorem 3. which is called *Generalized Twin primes theorem*.

THEOREM 3. (Generalized Twin primes theorem)

Let q>p>2 be symmetric prime pair with $2m_N$ distance, so that $m_N=\frac{q-p}{2}$, $N=\frac{q+p}{2}$, $p=N-m_N$ and $q=N+m_N$. Then there are infinite many p, q symmetric prime pairs for any m_N natural number.

Proof (indirect)

According to the above-proven Theorem 2. m_N can be any natural number.

Due to the Theorem 1. in [Dénes 2001] shown Table 6. below lists all natural numbers, so that columns 1. and 3. contain all the prime numbers.

Suppose that the *Kth* row is the last one in which p_K and $q_K = p_K + 2m_N$ are both prime numbers. In the rest of the proof of this theorem, for the shorter writing we will use the notation $m_N = c$.

Table 6.

	1.	2.	3.	4.	5.	6.
k	6k-1 ↓	6k	<i>6k+1</i> ↓	6k+2	6k+3	6k+4
0			1	2	3	4
1	5	6	7	8	9	10
2	11	12	13	14	15	16
3	17	18	19	20	21	22
4	23	24	25	26	27	28
5	29	30	31	32	33	34
6	35	36	37	38	39	40
7	41	42	43	44	45	46
K	6K-1	6K	6K+1	6K+2	6K+3	6K+4
K+1	6(K+1)-1= 6K+5	6(K+1)=6K+6	6(K+1)+1= 6K+7	6(K+1)+2= 6K+8	6(K+1)+3= 6K+9	6(K+1)+4= 6K+10
	•••	•••	•••	•••	•••	•••
k=K+x	6k-1= 6(K+x)-1	6(K+x)	6k+1= 6(K+x)+1			
			•••	•••	•••	

In the *Kth* row of Table 6. there are two prime numbers, so we have to examine the indirect conditions (16) and (17).

If
$$p_K = 6K - 1$$
 and $q_K = p_K + 2c$ are prime numbers, then for every x natural number:
$$\forall k = K + x \Rightarrow if \ p_k = 6(K + x) - 1 \ is \ prime, then \ q_k = p_k + 2c = 6(K + x) - 1 + 2c = 6K - 1 + 2c + 6x = q_K + 6x \ is \ NOT \ prime$$
(16)

If
$$p_K = 6K + 1$$
 and $q_K = p_K + 2c$ are prime numbers, then for every x natural number:
$$\forall k = K + x \Rightarrow if \ p_k = 6(K + x) + 1 \ is \ prime, then \quad q_k = p_k + 2c = 6(K + x) + 1 + 2c = 6K + 1 + 2c + 6x = q_K + 6x \ is \ NOT \ prime$$

$$(17)$$

Due to the indirect condition q_k is not a prime, so from the deductions (16) and (17) follows that any u, v natural numbers has one of the connections (5)-(8) exists. It follows that we get the following relationships for q_k and q_k .

(18)
$$q_{k} = 6r - 1 = q_{K} + 6x \quad \text{and} \quad r = 6uv + u - v \quad (u = 1, 2, 3, ...), (v = 1, 2, 3, ...) \Rightarrow$$

$$\Rightarrow q_{K} = 6r - 1 - 6x = 6(6uv + u - v) - 1 - 6x$$

Dénes, Tamás mathematician

Email: tdenest@freemail.hu

(19)
$$q_k = 6r - 1 = q_K + 6x \text{ and } r = 6uv - u + v \quad (u = 1, 2, 3, ...), (v = 1, 2, 3, ...) \Rightarrow$$

$$\Rightarrow q_K = 6r - 1 - 6x = 6(6uv - u + v) - 1 - 6x$$

(20)
$$q_k = 6r + 1 = q_K + 6x \text{ and } r = 6uv + u + v \quad (u = 1, 2, 3, ...), (v = 1, 2, 3, ...) \Rightarrow$$

$$\Rightarrow q_K = 6r + 1 - 6x = 6(6uv + u + v) + 1 - 6x$$

(21)
$$q_k = 6r + 1 = q_K + 6x \text{ and } r = 6uv - u - v \quad (u = 1, 2, 3, ...), (v = 1, 2, 3, ...) \Rightarrow q_K = 6r + 1 - 6x = 6(6uv - u - v) + 1 - 6x$$

Due to the indirect conditions (16)-(17) anyway we choose the u, v natural numbers the q_K is prime. Now we show that in the case of u=v, each of the cases (18)-(21) has infinite number of x values for which q_K a composite number and this contradicts the indirect conditions.

(22)
$$u = v \stackrel{(18),(19)}{\Rightarrow} q_K = 6(6u^2) - 1 - 6x \quad and \quad u = \frac{x+1}{6} \Rightarrow q_K = 6\frac{6(x+1)^2}{6^2} - 1 - 6x = x^2 + 2x + 1 - 1 - 6x = x^2 - 4x = x(x-4)$$

Since *u* is a natural number then the condition $u = \frac{x+1}{6}$ is always true if x=6l-1, where *l* is a natural number (hence x = 5, 11, 17, 23, ...).

(23)
$$u = v \Rightarrow q_K = 6(6u^2 + 2u) + 1 - 6x \quad and \quad u = \frac{x - 1}{6} \Rightarrow$$

$$\Rightarrow q_K = 6\left(\frac{6(x - 1)^2}{6^2} + \frac{2(x - 1)}{6}\right) + 1 - 6x = (x - 1)^2 + 2(x - 1) + 1 - 6x = x(x - 6)$$

$$u = v \stackrel{(21)}{\Rightarrow} q_K = 6(6u^2 - 2u) + 1 - 6x \quad and \quad u = \frac{x+1}{6} \Rightarrow$$

$$\Rightarrow q_K = 6\left(\frac{6(x+1)^2}{6^2} - \frac{2(x+1)}{6}\right) + 1 - 6x = (x+1)^2 - 2(2+1) + 1 - 6x = x(x-6)$$

Since *u* is a natural number then the condition $u = \frac{x-1}{6}$ is always true if x=6l+1, where *l* is a natural number (hence x = 7,13,19,25,...).

Q.E.D.

It is clear that if Theorem 3. applied for $m_N=1$, it is precisely the proof of the classic Twin primes conjecture, so thereafter we can called *Twin primes theorem*.

Generalized Twin primes theorem

Dénes, Tamás mathematician

References

[Dénes 2001] Dénes, Tamás: Complementary prime-sieve, PUre Mathematics and Applications, Vol.12 (2001), No. 2, pp. 197-207 http://www.titoktan.hu/_raktar/_e_vilagi_gondolatok/PUMA-CPS.pdf

[Dénes 2017] Dénes, Tamás: Dénes type Symmetric Prime Number theorem and its application to proof of the Even Goldbach conjecture http://www.titoktan.hu/_raktar/_e_vilagi_gondolatok/DT-SymmPrime-theorem.pdf