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Abstract 
Due to the Dénes type Symmetric Prime Number theorem in [Dénes 2017], we prove that 
there exist infinitely many primes of the form n2+1. 

-----  .  ----- 
 
 
Definition 1.  (Symmetrical prime pair) 
Let N≥4 and 0≤ mN ≤N/2 be natural numbers. If NN mNp −=−  and  NN mNp +=+   are prime 

numbers, then these are called symmetric prime pair for N. 
 
Theorem 1. 
If p and q are arbitrary two prime numbers, then exist N and mN natural numbers, that p and q 
are symmetric prime pair for N. 
 
PROOF 
Due to the 1st Theorem in [Dénes 2002], if p and q are primes then they has the forms p=6k±1 
and q=6r±1 (k and r are natural numbers). Thus the following cases are possible, where  the 
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Select the following mN values to calculated N in (1) - (4): 
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As it follows from (1)-(4) and (5)-(8): 
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The connections (9)-(12) correspond exactly to the Dénes type Symmetric Prime Number 
theorem in [Dénes 2017]. 

Q.E.D. 
 
The consequence of the Theorem 1. is the following Theorem 2.: 
 
Theorem 2. 
For arbitrary p prime number there exist N and mN natural numbers, that p=N-mN and 
q=N+mN is prime. 

-----  .  ----- 
 

For the following 3th Theorem we use the following known connection: 
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It follows that 
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Theorem 3. 
There exist infinitely many primes of the form n2+1. 
 
PROOF (indirect) 
Suppose that N is the last natural number for which p=N2+1 is the prime number. 
 p is a prime number this implies that  N2+1 is odd, so it is sufficient to prove only for even 
n>N. Then the indirect condition can be written as follows: 
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n
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It follows from Theorem 2. that there is a natural number c to which it is true 
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Figure 1. 

 
However, this contradicts the indirect condition (15). 

Q.E.D. 
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The calculation of the first ten and the first few more than 1 million prime numbers of the 
form n2+1 are demonstrated in Table 1. 
 
   Table 1. 

N p=N2+1 c mp=2c(N+c) q=p+2mp q=(N+2c)2+1 
Symmetr. 

primes 

2 5 prime 1 6 17 17 prime ∗∗∗∗ 
4 17 prime 1 10 37 37 prime ∗∗∗∗ 
6 37 prime 1 14 65 65=5x13  

6 37 prime 2 32 101 101 prime ∗∗∗∗ 
10 101 prime 1 22 145 145=5x29  

10 101 prime 2 48 197 197 prime ∗∗∗∗ 
14 197 prime 1 30 257 257 prime ∗∗∗∗ 
16 257 prime 1 34 325 325=52x13  

16 257 prime 2 72 401 401 prime ∗∗∗∗ 
20 401 prime 1 42 485 485=5x97  

20 401 prime 2 88 577 577 prime ∗∗∗∗ 
24 577 prime 1 50 677 677 prime ∗∗∗∗ 
26 677 prime 1 54 785 785=5x157  

26 677 prime 2 112 901 901=17x53  

26 677 prime 3 174 1.025 1.025=52x41  

26 677 prime 4 240 1.157 1.157=13x89  

26 677 prime 5 310 1.297 1.297 prime ∗∗∗∗ 
36 1.297 prime 1 74 1.445 1.445=5x172  

36 1.297 prime 2 152 1.601 1.601 prime ∗∗∗∗ 

. . .       

1.004 1.008.017 prime  1 2.010 1.012.037 1.012.037  

1.004 1.008.017 prime 2 4.024 1.016.065 1.016.065=5x203.213  

1.004 1.008.017 prime 3 6.042 1.020.101 1.020.101 prime ∗∗∗∗ 
1.010 1.020.101 prime 1 2.022 1.024.145 1.024.145=5x257x797  

1.010 1.020.101 prime 2 4.048 1.028.197 1.028.197=109x9.433  

1.010 1.020.101 prime 3 6.078 1.032.257 1.032.257=17x41x1.481  

1.010 1.020.101 prime 4 8.112 1.036.325 1.036.325=52x41.453  

1.010 1.020.101 prime 5 10.150 1.040.401 1.040.401=101x10.301  

1.010 1.020.101 prime 6 12.192 1.044.485 1.044.485=5x13x16.069  

1.010 1.020.101 prime 7 14.238 1.048.577 1.048.577=17x61.681  

1.010 1.020.101 prime 8 16.288 1.052.677 1.052.677=61x17.257  

1.010 1.020.101 prime 9 18.342 1.056.785 1.056.785=5x241x877  

1.010 1.020.101 prime 10 20.400 1.060.901 1.060.901=37x53x541  

1.010 1.020.101 prime 11 22.462 1.065.025 1.065.025=52x13x29x113  

1.010 1.020.101 prime 12 24.528 1.069.157 1.069.157=41x89x293  

1.010 1.020.101 prime 13 26.598 1.073.297 1.073.297 prime ∗∗∗∗ 
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