BOUNDED GAPS BETWEEN PRIMES

ANDREW GRANVILLE

ABSTRACT. Recently, Yitang Zhang proved the existence of a finite bound B such that
there are infinitely many pairs p,, p,+1 of consecutive primes for which p, 1 —p, < B.
This can be seen as a massive breakthrough on the subject of twin primes and other
delicate questions about prime numbers that had previously seemed intractable. In
this article we will discuss Zhang’s extraordinary work, putting it in its context in
analytic number theory, and sketch a proof of his theorem.

Zhang even proved the result with B = 70000 000. A co-operative team, polymaths,
collaborating only on-line, has been able to lower the value of B to 4680, and it seems
plausible that these techniques can be pushed somewhat further, though the limit of
these methods seem, for now, to be B = 12.
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2 ANDREW GRANVILLE

1. INTRODUCTION

1.1. Intriguing questions about primes. Early on in our mathematical education
we get used to the two basic rules of arithmetic, addition and multiplication. When
we define a prime number, simply in terms of the number’s multiplicative properties,
we discover a strange and magical sequence of numbers. On the one hand, so easily
defined, on the other, so difficult to get a firm grasp of, since they are defined in terms
of what they are not (i.e. that they cannot be factored into two smaller integers)).

When one writes down the sequence of prime numbers:
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61, . ..

one sees that they occur frequently, but it took a rather clever construction of the
ancient Greeks to even establish that there really are infinitely many. Looking further
at a list of primes, some patterns begin to emerge; for example, one sees that they often
come in pairs:

3and 5, 5and 7, 11 and 13, 17 and 19, 29 and 31, 41 and 43, 59 and 61, ...

One might guess that there are infinitely many such prime pairs. But this is an open,
elusive question, the twin prime conjecture. Until recently there was little theoretical
evidence for it. All that one could say is that there was an enormous amount of com-
putational evidence that these pairs never quit; and that this conjecture (and various
more refined versions) fit into an enormous network of conjecture, which build a beau-
tiful elegant structure of all sorts of prime patterns; and if the twin prime conjecture
were to be false then the whole edifice would crumble.

The twin prime conjecture is certainly intriguing to both amateur and professional
mathematicians alike, though one might argue that it is an artificial question, since it
asks for a very delicate additive property of a sequence defined by its multiplicative
properties. Indeed, number theorists had struggled, until very recently, to identify an
approach to this question that seemed likely to make any significant headway. In this
article we will discuss these latest shocking developments. In the first few sections we
will take a leisurely stroll through the historical and mathematical background, so as
to give the reader a sense of the great theorem that has been recently proved, and also
from a perspective that will prepare the reader for the details of the proof.

1.2. Other patterns. Looking at the list of primes above we see other patterns that
begin to emerge, for example, one can find four primes which have all the same digits,
except the last one:

11,13,17 and 19, which is repeated with 101,103,107 and 109,

and one can find many more such examples — are there infinitely many? More simply
how about prime pairs with difference 4,

3dand 7, 7 and 11, 13 and 17, 19 and 23, 37 and 41, 43 and 47, 67 and 71,...;
or difference 10,

3 and 13, 7 and 17, 13 and 23, 19 and 29, 31 and 41, 37 and 47, 43 and 53,...7
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Are there infinitely many such pairs? Such questions were probably asked back to
antiquity, but the first clear mention of twin primes in the literature appears in a paper
of de Polignac from 1849. In his honour we now call any integer h, for which there are
infinitely many prime pairs p,p + h, a de Polignac numberﬂ

Then there are the Sophie Germain pairs, primes p and g := 2p + 1, which prove useful
in several simple algebraic constructions;

2 and 5, 3and 7, 5 and 11, 11 and 23, 23 and 47, 29 and 59, 41 and 83,...;

Now we have spotted all sorts of patterns, we need to ask ourselves whether there is a
way of predicting which patterns can occur and which do not. Let’s start by looking at
the possible differences between primes: It is obvious that there are not infinitely many
prime pairs of difference 1, because one of any two consecutive integers must be even,
and hence can only be prime if it equals 2. Thus there is just the one pair, 2 and 3, of
primes with difference 1. One can make a similar argument for prime pairs with odd
difference. Hence if h is an integer for which there are infinitely many prime pairs of the
form p, ¢ = p+ h then h must be even. We have seen many examples, above, for each
of h =2, h =4 and h = 10, and the reader can similarly construct lists of examples for
h = 6 and for h = 8, and indeed for any other even h that takes her or his fancy. This
leads us to bet on the generalized twin prime conjecture, which states that for any even
integer 2k there are infinitely many prime pairs p, ¢ = p + 2k.

What about prime triples? or quadruples? We saw two examples of prime quadruples of
the form 10n+ 1, 10n+ 3, 10n+ 7, 10n + 9, and believe that there are infinitely many.
What about other patterns? Evidently any pattern that includes an odd difference
cannot succeed. Are there any other obstructions? The simplest pattern that avoids an
odd difference is n,n+2,n+4. One finds the one example 3, 5, 7 of such a prime triple,
but no others. Further examination makes it clear why not: One of the three numbers
is always divisible by 3. This is very similar to what happened with n,n + 1; and one
can verify that, similarly, one of n,n + 6,n + 12, n + 18, n + 24 is always divisible by 5.
The general obstruction can be described as follows:

For a given set of distinct integers a; < as < ... < a; we say that prime p is an
obstruction if p divides at least one of n + ay,...,n + ag, for every integer n. In other
words, p divides

P(n)=(n+a)(n+az)...(n+a)

for every integer n; which can be classified by the condition that the set ai,as, ..., ax
(mod p) includes all of the residue classes mod p. If no prime is an obstruction then we
say that x + aq,...,x + a; is an admissible set of formsﬂ

'Pintz makes a slightly definition: That is, that p and p + h should be consecutive primes.

2These are useful because, in this case, the group of reduced residues mod ¢ is a cyclic group of
order ¢ — 1 = 2p, and therefore isomorphic to Cy x C), if p > 2. Therefore every element in the group
has order 1 (that is, 1 (mod ¢)), 2 (that is, —1 (mod ¢)), p (the squares mod ¢) or 2p = ¢ — 1. Hence
g (mod q) generates the group of reduced residues if and only if g is not a square mod ¢ and g # —1
(mod q).

3Notice that a1, as, . . ., ak (mod p) can occupy no more than k residue classes mod p and so, if p > k
then p cannot be an obstruction.
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Number theorists have long made the optimistic conjecture if there is no such “obvious”
obstruction to a set of linear forms being infinitely often prime, then they are infinitely
often simultaneously prime. That is:

Conjecture: Ifx+ay,...,x+ax is an admissible set of forms then there are infinitely
many integers n such that n + ay,...,n + ay are all prime numbers.
In this case, we call n + ay,...,n + ax a k-tuple of prime numbers.

To date, this has not been proven for any k£ > 1 though, following Zhang’s work, we are
starting to get close for £ = 2. Indeed, Zhang proves a weak variant of this conjecture,
as we shall see.

The above conjecture can be extended, as is, to all sets of k linear forms with integer
coefficients in one variable, so long as we extend the notion of admissibility to also
exclude the obstruction that two of the linear forms have different signs for all, but
finitely many, n, since a negative integer cannot be prime (for example, n and 2 — n);
some people call this the “obstruction at the ‘prime’, —17. We can also extend the
conjecture to more than one variable (for example the set of forms m, m + n, m + 4n):

The prime k-tuplets conjecture: If a set of k linear forms in n variables is admis-
sible then there are infinitely many sets of n integers such that when we substitute these
integers into the forms we get a k-tuple of prime numbers.

There has been substantial recent progress on this conjecture. The famous breakthrough
was Green and Tao’s theorem for the k-tuple of linear forms in the two variables a and

d:
a, a+d, a+2d,..., a+ (k—1)d.

Along with Ziegler, they went on to prove the prime k-tuplets conjecture for any ad-
missible set of linear forms, provided no two satisfy a linear equation over the integers.
What a remarkable theorem! Unfortunately these exceptions include many of the ques-
tions we are most interested in; for example, p, ¢ = p + 2 satisfy the linear equation
qg—p=2; and p, ¢ = 2p + 1 satisfy the linear equation ¢ —2p = 1).

Finally, we also believe that the conjecture holds if we consider any admissible set of
k irreducible polynomials with integer coefficients, with any number of variables. For
example we believe that n? + 1 is infinitely often prime, and that there are infinitely
many prime triples m, n, m? + 2n2.

We will end this section by stating Zhang’s main theorem and a few of the more beguiling
consequences:

Zhang’s main theorem: There exists an integer k such that the following is true: If
T+ ay,...,x + ag is an admissible set of forms then there are infinitely many integers
n such that at least two of n 4+ ay,...,n + ax are prime numbers.
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Note that the result states that only two of the n + a; are prime, not all (as would be
required in the prime k-tuplets conjecture). Zhang proved this result for a fairly large
value of k, that is £ = 3500000, which has been reduced to £ = 632 by the polymath8
team. Of course if one could take k£ = 2 then we would have the twin prime conjecture,
but the most optimistic plan at the moment, along the lines of Zhang’s proof, would
yield k = 5.

To deduce that there are bounded gaps between primes from Zhang’s Theorem we need
only show the existence of an admissible set with k elements. This is not difficult,
simply by letting the a; be the first k primes > k;f_[] Hence we have proved:

Corollary: [Bounded gaps between primes| There exists a bound B such that there are
infinitely many integers pairs of prime numbers p < q < p + B.

Finding the smallest B for a given k is a challenging question. The prime number
theorem together with our construction above suggests that B < k(logk + C) for some
constant C, but it is interesting to get better bounds.

Our Corollary further implies

Corollary: There is an integer h,0 < h < B such that there are infinitely many pairs
of primes p,p + h.

That is, some positive integer < B is a de Polignac number. In fact one can go a little
further using Zhang’s main theorem:

Corollary: Let k be as in Zhang’s Theorem, and let A be any admissible set of k
integers. There is an integer h € (A — A)t :={a—b: a > be A} such that there are
infinitely many pairs of primes p,p + h.

Finally we can deduce from this

Corollary: A positive proportion of integers are de Polignac numbers

Proof. If A < {0,..., B} is an admissible set then mA := {ma : a € A} is admissible
for every integer m > 1. Given large = let M = [z/B]. By Zhang’s Theorem there
exists a pair a,, < b,, € A such that m(b,, — a,,) is a de Polgnac number. Since there
are at most B/2 differences d = b — a with a < b € A there must be some difference
which is the value of b,, — a,, for at least 2M /B values of m < M. This gives rise to
> 2M /B > z/B? distinct de Polignac numbers of the form md < . O

Our construction above implies that the proportion is at least 1/k%*(logk + C')?.

4This is admissible since none of the a; is 0 (mod p) for any p < k, and the p > k were handled in
the previous footnote.



6 ANDREW GRANVILLE

1.3. The simplest analytic approach. There are 14 odd primes up to 50, that is 14
out of the 25 odd integers up to 50, so one can deduce that several pairs differ by 2.
We might hope to take this kind of density approach more generally: If A is a sequence
of integers of density 1/2 (in all of the integers) then we can easily deduce that there
are many pairs of elements of A that differ by no more than 2. One might guess that
there are pairs that differ by exactly 2, but this is by no means guaranteed, as the
example A := {n € Z: n = 1or2 (mod 4)} shows. Moreover, to use this kind of
reasoning to hunt for twin primes, we presumably need a lower bound on the density of
primes as one looks at larger and larger primes. This was something that intrigued the
young Gauss who, by examining Chernik’s table of primes up to one million, surmised
that “the density of primes at around z is roughly 1/logz” (and this was subsequently
verified, as a consequence of the prime number theorem). Therefore we are guaranteed
that there are infinitely many pairs of primes p < ¢ with ¢ — p < logp, which is not
quite as small a gap as we are hoping for! Nonetheless this raises the question: Fix
¢ > 0. Can we prove that

There are infinitely many pairs of primes p < q with ¢ < p + clogp ?

This follows for all ¢ > 1 by the prime number theorem, but it is not easy to prove such
a result for any particular value of ¢ < 1. The first such results were proved condition-
ally assuming the Generalized Riemann Hypothesis. This is, in itself, surprising: The
Generalized Riemann Hypothesis was formulated to better understand the distribution
of primes in arithmetic progressions, so why would it appear in an argument about
short gaps between primes? It is far from obvious by the argument used, and yet this
connection has deepened and broadened as the literature developed. We will discuss
primes in arithmetic progressions in detail in the next section.

The first unconditional (though inexplicit) such result, bounding gaps between primes,
was proved by Erdés in 1940 ingrﬁlllg&mall sieve (we will obtain any ¢ e > 0.5614
by such a method in section%’)._ln_w%, Bombieri and Davenport TZO]ms_ubstituted
the Bombieri-Vinogradov theorem for the Generalized Riemann Hypothesis in earlier,
cgnéiritional arguments, to prove this unconditionally for any ¢ > %; and in 1988 Maier
25]]_0bserved that one can easily modify this to obtain any ¢ > %6_7. The Bombieri-
Vinogradov Theorem is also a result about primes in arithmetic progressions, as we will
discuss later. Maier further improved this, by combining the approaches of Erdés and
of Bombieri and Davenport, to some bound a little smaller than i, with substantial

4
effort.

The first big breakthrough occurred in 2005 when Goldston, Pintz and Yildirim ﬁ%f] were
able to show that there are infinitely many pairs of primes p < ¢ with ¢ < p + clogp,
for any given ¢ > 0. Indeed they extended their methods to show that, for any ¢ > 0,
there are infinitely many pairs of primes p < ¢ for which

q—p < (logp)/**.

It is their method which forms the basis of the discussion in this paper. Like Bombieri

and Davenport, they showed that one can could better understand small gaps between
primes, by obtaining strong estimates on primes in arithmetic progressions, as in the
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Bombieri-Vinogradov Theorem. Even more, if one assumes a strong, but widely be-
lieved, conjecture about the equi-distribution of primes in arithmetic progressions, which
extends the Bombieri-Vinogradov Theorem, then one can show that there are infinitely
many pairs of primes p < ¢ which differ by no more than 16 (that is, p < ¢ < p + 16)!
What an extraordinary statement, and one that we will briefly discuss: We know that
ifp<qg<p+16thenqg—p =2, 4, 6, 8, 10, 12, 14 or 16, and so at least one of these
difference occurs infinitely often. That is, there exists a positive, even integer 2k < 16
such that there are infinitely pairs of primes p, p + 2k. Very recently this has been
refined further by James Maynard, improving the upper bound to 12, by a variant of
the original argument.

After Goldston, Pintz and Yildirim, most of the experts tried and failed to obtain enough
of an improvement of the Bombieri-Vinogradov Theorem to deduce the existence of some
finite bound B such that there are infinitely many pairs of primes that differ by no more
than B. To improve the Bombieri-Vinogradov Theorem is no mean feat and people have
longed discussed “barriers’, Lo 1Fobtaining such improvements. In fact a t 1nique had
been developed by Fouvry thUu],_a%nd by Bombieri, Friedlander and Iwaniec %3 , but these
were neither powerful enough nor general enough to work in this circumstance.

Enter Yitang Zhang, an unlikely figure to go so much further than the experts, and to
find exactly the right improvement and refinement of the Bombieri-Vinogradov Theorem
to establish the existence of the elusive bound B such that there are infinitely many
pairs of primes that differ by no more than B. By all accounts, Zhang was a brilliant
student in Beijing from 1978 to the mid-80s, finishing with a master’s degree, and then
working on the Jacobian conjecture for his Ph.D. at Purdue, graduating in 1992. He
did not proceed to a job in academia, working in odd jobs, such as in a sandwich shop,
at a motel and as a delivery worker. Finally in 1999 he got a job at the University of
New Hampshire as a lecturer, with a high teaching load, working with many of the less
qualified undergraduate students. From time-to-time a lecturer devotes their energy to
working on proving great results, but few have done so with such aplomb as Zhang.
Not only did he prove a great result, but he did so by improving technically on the
experts, having important key ideas that they missed and developing a highly ingenious
and elegant construction concerning exponential sums. Then, so as not to be rejected
out of hand, he wrote his difficult paper up in such a clear manner that it could not be
denied. Albert Einstein worked in a patent office, Yitang Zhang in a Subway sandwich
shop; both found time, despite the unrelated calls on their time and energy, to think
the deepest thoughts in science. Moreover Zhang did so at the relatively advanced age
of 50 (or more). Truly eztraordinary.



sveHeuristic

8 ANDREW GRANVILLE

2. THE DISTRIBUTION OF PRIMES, DIVISORS AND PRIME k-TUPLETS

2.1. The prime number theorem. As we mentioned in the previous section, Gauss
observed, at the age of 16, that “the density of primes at around z is roughly 1/logz”,
which leads quite naturally to the conjecture that
Todt x

5 logt  logx
(We use the symbol A(x) ~ B(x) for two functions A and B of z, to mean that
A(z)/B(z) — 1 as ¢ — o0.) This was proved in 1896, the prime number theorem,
and the integral provides a considerably more precise approximation to the number of

primes < z, than z/logx. However, this integral is rather cumbersome to work with,
and so it is natural to instead weight each prime with log p; that is we work with

O(x) := Z log p

p prime
p<T

#{primes p < =} ~ as T — o0.

and the prime number theorem implieg] that

O(r) ~x asx — oo. (2.1)

2.2. A sieving heuristic to guess at the prime number theorem. How many
integers up to x have no prime factors <y ? If y = 4/« then this counts 1 and all of the
primes between y and x, so an accurate answer would yield the prime number theorem.

The usual heuristic is to start by observing that there are /2 + O(1) integers up to
x that are not divisible by 2. A proportion %rds of these remaining integers are not
divisible by 3; then a proportion %ths of the remaining integers are not divisible by 5,
etc. Hence we guess that the number of integers < x which are free of prime factors

< y, is roughly
1
H (1 — —> - T
p

PKY
Evaluating the product here is tricky but was accomplished by Mertens: If y — oo then

() ~ o
[T(1--)~ .
p logy

Py

Here v is the Euler-Mascheroni constant, defined as limy_,o % + % +...+ % —log N.
There is no obvious explanation as to why this constant, defined in a very different
context, appears here.

If V/x <y = o(x) (that is, for any fixed ¢ > 0 we have y < ex once z is sufficiently
large) then we know from the prime number theorem that there are ~ x/log z integers
left unsieved, whereas the prediction from our heuristic varies considerably as y varies
in this range. This shows that the heuristic is wrong for large y. Taking y = /x it

5This is really stating things backwards since, in proving the prime number theorem, it is significantly
easier to include the logp weight, and then deduce estimates for the number of primes by partial
summation.
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predicts too many primes by a factor of 2e~7; taking y = z/logx it predicts too few
primes by a factor of e™”. In fact this heuristic gives an accurate estimate provided
y = 2z°M. We will exploit the difference between this heuristic and the Cor%c.tegﬂuin&

to show that there are smaller than average gaps between primes in section [3.2]

2.3. The prime number theorem for arithmetic progressions, I. Any prime
divisor of (a,q) is an obstruction to the primality of values of the polynomial ¢z + a,
and these are the only such obstructions. The prime k-tuplets conjecture therefore
implies that if (a,q) = 1 then there are infinitely many primes of the form gn + a. This
was first proved by Dirichlet in 1837. Once proved one might ask for a more quantitative
result. If we look at the primes in the arithmetic progressions (mod 10):

11, 31, 41, 61, 71, 101
3, 13, 23, 43, 53, 73, 83, 103
7, 17, 37, 47, 67, 97, 107
19, 29, 59, 79, 89, 109
then there seem to be roughly equal numbers in each, and this pattern persists as we

look further out. Let ¢(gq) denote the number of a (mod ¢) for which (a,q) = 1, and so
we expect that

0(x;q,a) := Z logp ~ % as T — oo.

p prime
PsT
p=a (mod q)

This is the prime number theorem for arithmetic progressions and was first proved by
suitably modifying the proof of the prime number theorem.

The function ¢(q) was studied by Euler, who showed that it is multiplicative, that is
o) = | [ o)
r°lq

(where p°|¢ means that p° is the highest power of prime p dividing ¢) and that ¢(p°) =
p¢ —p¢~Lforall e > 1.

2.4. Dirichlet’s divisor trick. Another multiplicative function of importance is the
divisor function
7(n) = Z 1

d|n

where the sum is over the positive integers d that divide n. It is not difficult to verify
that 7(p°) = e + 1.

If n is squarefree and has k prime factors then 7(n) = 2%, so we see that 7(n) varies
greatly depending on the arithmetic structure of n. Nonetheless one might ask for the
average of 7(n), that is the average number of divisors of a positive integer < x. A first
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approach yields that

PEOEDISNEDISIED W]

n<x n<z dln dln n<z d<z

since the positive integers up to x that are divisible by d can be written as dm with
m < x/d, and so there are [x/d] such integers, where [t] denotes the largest integer < ¢.
It evident that [t] = ¢ + O(1), where O(1) signifies that there is a correction here of at
most a bounded multiple of 1. If we substitute this approximation in above, we obtain

1 1 x 1 1

- —- Y (G+om) =2 5+0(-21
L= 2 (5rom) - B0 (13))
One can approximate »,,__ é by Sf dt/t =log x. Indeed the difference tends to a limit,
the Euler-Mascheroni constant v := limy_,q % + % +...+ % — log N. Hence we have
proved that the integers up to x have logz + O(1) divisors, on average, which is quite
remarkable for such a wildly fluctuating function.

Dirichlet studied this argument and noticed that when we approximate [x/d] by x/d +
O(1) for large d, say for those d in (x/2, z], then this is not really a very good approxi-
mation, and gives a large cumulative error term, O(z). However we know that [z/d] = 1
exactly, for each of these d, and so we can estimate this sum by z/2 + O(1), which is
much more precise. Dirichlet realized that the correct way to formulate this observation
is to write n = dm, where d and m are integers. When d is small then we should fix
d, and count the number of such m, with m < z/d (as we did above); but when m is
small, then we should fix m, and count the number of d with d < z/m. In this way
our sums are all over long intervals, which allows us to get an accurate approximation
of their value. In fact we can exploit the symmetry here to simply “break the sum” at
z'/2. Hence Dirichlet proceeded as follows:

2rmy=2, ) 1= D1+ ) D1= ), )]

n<z n<x dm=n d<./z 7’2?% m<\/T n<|:): d<v/z m<+/z
X T
-y (3 +o)+ Y (5 +00)-z+0Wa).
d</z m<./x m

One can do even better with these sums than above, showing that >} _\ 1/n = log N +
v+ O(1/N). Hence we can deduce that

éZr(n)=logw+2y—1+O<\%>,

an extraordinary improvement upon the earlier error term.

n<e

In the calculations in this article, this same idea is essential. We will take some functions,
that are difficult to sum, and rewrite them as a sum of products of other functions, that
are easier to sum, and find a way to sum them over long enough intervals for our methods
to take effect. So we should define the convolution of two functions f and g as f = g

where
= > fla)g(b)

ab=n
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for every integer n = 1, where the sum is over all pairs of positive integers a,b whose
product is n. Hence 7 = 1 = 1, where 1 is the function with 1(n) = 1 for every n > 1.

0 otherwise. Another important multiplicative
since 1 # pr = d;. From this one can verify that
for all primes p.

Let d1(n) = 1 if n = 1, and 0;(n) =
function is the Mobius function p(n),
p(p) = =1 and p(p®) =0 for all e = 2,
We define L(n) := logn, and we let A(n) = logp if n is a power of prime p, and
A(n) = 0 otherwise. By factoring n, we see that L = 1 = A. We therefore deduce that
A=(u=1)+A=p»(1+A)=p=L;that is

logp if n =p™, where p is prime,m > 1;
A(n) = Z p(a)logh = { : (2.2)

0 otherwise.
ab=n

We can approach the prime number theorem via this identity by summing over alln < z
to get

D IA(m) = ). p(a)logd.

n<x ab<sz
The left-hand side equals 6(x) plus a contribution from prime powers p® with e > 2, and
it is easily shown that this contribution is small (in fact O(4/x)). The right hand side
is the convolution of an awkward function p and something very smooth and easy to
sum, L. Indeed, it is easy to see that >, _,logb = log 'Sand we can estimate this very
precisely using Stirling’s formula. One can infer (see [I8] for details) that the prime
number theorem is equivalent to proving that

1
—Z,u(n)—>0 as T — o0.
T

n<x

identit
In our work here we will need a more convoluted identity that 1'%%5 fo prove our esti-
mates for primes in arithmetic progressions. lalerga%re several possible suitable identi-
ties, the simplest of which is due to Vaughan [35]

Vaughan’s identity : Ay =pey*L—ppgsAoy =1+ psysAsy =1 (2.3)

where g-y (n) = g(n) if n > W and g(n) = 0 otherwise; and g = g<w + g-w. To verify
this identity, we manipulate the algebra of convolutions:

A)VZA_A<V=(H*L)_A<V*(1*,M)
=pv s Ltpzu s L—peysAay s 1= poy s Aoy + 1
:M<U*L_,U<U*A<V*1+,U;U*(A*1—A<V*1)’

2.5. A quantitative prime k-tuplets conjecture. We are going to develop a heuris-
tic to guesstimate the number of pairs of twin primes p,p + 2 up to x. We start with
Gauss’s statement that “the density of primes at around z is roughly 1/logx. Hence
the probability that p is prime is 1/logx, and the probability that p + 2 is prime is
1/log x so, assuming that these events are independent, the probability that p and p+ 2

VMidentity

Vaughident
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are simultaneously prime is

11
- (log)?’

and so we might expect about z/(logz)? pairs of twin primes p,p + 2 < z. But there
is a problem with this reasoning, since we are implicitly assuming that the events “p
is prime for an arbitrary integer p < x”, and “p + 2 is prime for an arbitrary integer
p < 2”7, can be considered to be independent. This is obviously false since, for example,
if p is even then p + 2 must also be. H So, to correct for the non-independence, we
consider the ratio of the probability that both p and p + 2 are not divisible by ¢, to the
probabiliity that p and p’ are not divisible by ¢, for each small prime gq.

log x . log =

Now the probability that ¢ divides an arbitrary integer p is 1/q; and hence the probability
that p is not divisible by ¢ is 1 — 1/q. Therefore the probability that both of two
independently chosen integers are not divisible by ¢, is (1 — 1/¢)%.

The probability that ¢ does not divide either p or p + 2, equals the probability that
p#0or —2 (mod g). If ¢ > 2 then p can be in any one of ¢ — 2 residue classes mod g,
which occurs, for a randomly chosen p (mod ¢), with probability 1 —2/q. If ¢ = 2 then
p can be in any just one residue class mod 2, which occurs with probability 1/2. Hence
the “correction factor” for divisibility by 2 is

(1-3)
=17
whereas the “correction factor” for divisibility by any prime ¢ > 2 is
2
(1-2)
— 1y
)

Now divisibility by different small primes in independent, as we vary over values of n,
by the Chinese Remainder Theorem, and so we might expect to multiply together all
of these correction factors, corresponding to each “small” prime ¢q. The question then
becomes, what does “small” mean? In fact, it doesn’t matter much because the product
of the correction factors over larger primes is very close to 1, and hence we can simply
extend the correction to be a product over all primes ¢. (More precisely, the infinite
product over all ¢, converges.) Hence we define the twin prime constant to be

1-2
c=2 [] T 1.3203236316,
q

and we conjecture that the number of prime pairs p,p+ 2 < z is

_r
(logz)?

~

6Also note that the same reasoning would tell us that there are ~ x/(log x)? prime pairs p, p+1 < .
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Computational evidence suggests that this is a pretty good guess. The analogous argu-
ment implies the conjecture that the number of prime pairs p,p + 2k < z is

This argument is easily modified to make an analogous prediction for any k-tuple: Given
aiy,...,ag, let Q(p) be the set of distinct residues given by ay,...,a; (mod p), and then
let w(p) = |2(p)|. None of the n + a; is divisible by p if and only if n is in any one of
p — w(p) residue classes mod p, and therefore the correction factor for prime p is

(1)
-
Hence we predict that the number of prime k-tuplets n + aq,...,n 4+ a < x is,
w(p)
T (1—=%%)
~ C(G) (log x)k where C(CL) = H W
P P

An analogous conjecture, via similar reasoning, can be made for the frequency of prime
k-tuplets of polynomial values in several variables. What is remarkable is that com-
putational evidence suggests that these conjectures do approach the truth, though this

rests on a rather shaky theoretical framework. A more convincing theoretical framewark . .
(though rather more difficult) was given by Hardy and Littlewood [I9] = see section

Recogktuple

identit
2.6. Recognizing prime k-tuples. The identity 1'?%) allows us to distinguish prime
powers from composite numbers in an arithmetic way. Such identities not only recognize
primes, but can be used to identify integers with no more than & prime factors. For

example
(2m —1)(logp)? ifn =p™;
Zu (logn/d)®> = {2logplogq if n=p*¢", p#q
djn 0 otherwise.
In general

Z,u (logn/d)"

d|n

equals 0 if v(n) > k (where v(m) denotes the number of distinct prime factors of m).
We will be working with (a variant of) the expression

Ar(P(n)).

We have seen that if this is non-zero then P(n) has < k distinct prime factors. We will
next show that if 0 < a; < ... < ay and n = a;...a, then P(n) must have exactly k
distinct prime factors. In that case if the & prime factors of P(n) are py, ..., pg, then

A(P(n)) = kl(logpy) ... (log p.).



14 ANDREW GRANVILLE

Now, suppose that P(n) has r < k — 1 distinct prime factors, call them p,,...,p,. For
each p; select j = j(¢) for which the power of p; dividing n + a; is maximized. Evidently
there exists some J, 1 < J < k which is not a j(i). Therefore if p{*|n + a; then

(n+ay) — (n+aju) = (ay — a;)), which divides | | (ay — a;).
1<j<k
i#J

e;
b;

Hence
n+ ay; = lem; pi divides H (ay—a;),
1<j<k
g
and son <n+ay; < Hj a; < n, by hypothesis, which is impossible.

' ) identit ,
The expression for A(n) in can be re-written as

A(n) = Z p(d)logn/d, and even = Z p(d)log R/d,
d| dn

for any R, provided n > 1. Selberg has shown that the truncation
S ) log R/d

din
d<R

is also “sensitive to primes”; and can be considerably easier to work with in various
analytic arguments. In our case, we will work with the function

> u(d)(log R/,
aP(n)
d<R

which is analogously “sensitive” to prime k-tuplets, and easier to work with than the
full sum for Ag(P(n)).



BOUNDED GAPS BETWEEN PRIMES 15

3. UNIFORMITY IN ARITHMETIC PROGRESSIONS

3.1. When primes are first equi-distributed in arithmetic progressions. There
is an important further issue when considering primes in arithmetic progressions: In
many applications it is important to know when we are first guaranteed that the primes
are more-or-less equi-distributed amongst the arithmetic progressions a (mod ¢) with
(a,q) = 1; that is

0(x;q,a) ~ % for all (a,q) = 1. (3.1)

To be clear, here we want this to hold when z is a function of ¢, as ¢ — 0.

If one does extensive calculations then one finds that, for any € > 0, if ¢ is sufficiently
large and x = ¢! then the primes up to x are ecg%?ﬁ-gli%tributed amongst the arithmetic

progressions a (mod ¢) with (a,q) = 1, that is (3.1]] holds. This is not only unproved
at the moment, also no one really has a plajpgi alesplan of how to show such a result.
However the slightly weaker statement that (3. olds for any = > ¢**¢, can be shown

to be true, assuming the Generalized Riemann Hypothesis. This gives us a clear plan
for proving such a result, but one which has seen little progress in the last century!

The best unconditional results known are much weaker than we have hoped for, equidis-
tribution only being proved once x > e?°. This is the Siegel-Walfisz Theorem, and it
can be stated in several (equivalent) ways with an error term: For any B > 0 we have

Xz

0(x;q,a) = @ + O (W) for all (a,q) = 1. (3.2)

Or: for any A > 0 there exists B > 0 such that if ¢ < (logz)* then

0(z:q.a) — @ {1 L0 (m)} for all (a,q) = 1. (3.3)

That x needs to be so large compared to ¢ limited the number of applications of this
result.

The great breakthough of the second-half of the twentieth century came in appreciating
that for many applications, it is not so important that we know that equidistribution
holds for every a with (a,q) = 1, and every q up to some @, but rather that this holds
for most such ¢ (with Q = x%/27). It takes some juggling of variables to state the
Bombieri-Vinogradov Theorem: We are interested, for each modulus ¢, in the size of

the largest error term
x

max |0(x;q,a) — —|,
a mod q ( ) ¢(q)
(a,q)=1
or even
Y
max max |#(y;q,a) — ——|.
y<z a mod g (y q ) gb(q)‘

(a,q):l
The bounds 0 < 6(z;q,a) € flogm are trivial, the upper bound obtained by bounding

the possible contribution from each term of the arithmetic progression. (Throughout
the symbol “«”, as in “f(z) « g(z)” means “there exists a constant ¢ > 0 such that

SW1

SW2
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f(z) < eg(z).”) We would like to improve on the “trivial” upper bound, perhaps by
a power of logx, but we are unable to do so for all q. However, it turns out that we
can prove that if there are exceptional ¢, then they are few and far between, and the
Bombieri-Vinogradov Theorem expresses this in a useful form. The first thing we do is
add up the above quantities over all ¢ < () < x. The “trivial” upper bound is then

& Z z1ogz13 « z(log z)?.
q<Q 4

The Bombieri-Vinogradov states that we can beat this trivial bound by an arbitrary
power of log z, provided @ is a little smaller than \/x:

The Bombieri-Vinogradov Theorem. For any given A > 0 there exists a constant
B = B(A), such that

9(277 q, CL) -

max
a mod g
1@ (aq)=1

where Q = 2'/2/(log z)".

LA

?(q)

(log z)A

In fact one can take B = 2A + 5; and one can also replace the summand here by the
expression above with the extra sum over y (though we will not need to do this here).

It is believed that this kind of estimat Jholds with @ significantly larger than 1/x; indeed
Elliott and Halberstam conjectured fﬁaf one can take () = z¢ for any constant ¢ < 1:
The Elliott-Halberstam conjecture For any given A > 0 andn, 0 < n < %, we
have

0(z;q,a) — <

max (log 2)A

a mod q
1@ (aq)=1

¢(q)

where Q = x'/2*7.

: 4t B
However, it was shown in ﬁfTS’]'that one cannot go so far as to take Q = z/(logz)”.
’I;)}\IIIS conjecture was the g tarting point for the work of Goldston, Pintz and Ylldmm

15], as well as of Zhang T% This starting point was a beautiful argument from 1'5]
that we will spell out in the next section, which yields the following result.

Theorem 3.1 (Goldston-Pintz-Yildirim). WTS Let k = 2,1 > 1 be integers, and 0 <

n < 1/2, such that
1 20+1
1+2n>(1+2l+1)(1+ ’ ) (3.4)

If the Elliott-Halberstam conjecture holds with QQ = x'/>*" then the following is true: If
x+ay,...,x+ a; 1s an admissible set of forms then there are infinitely many integers
n such that at least two of n + ay,...,n + ax are prime numbers.

The conclusion here is exactly the statement of Zhang’s main theorem.
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For now the Elliott-Halberstam conjecture seems too difficult to prove, but progress
has been made when restricting to one particular residue class: Fix integer a # 0. We
believe that for any fixed n, 0 <n < %, one has

2, ‘9(“" 29 50

q<Q
(g,0)=1

T
(log )

<

where @ = z'/2*". The key to progress has been to notice that if one can“factor” the
key terms here into a sum of convolutions then it is easier to make progress, mugch. S e,
1'%% and

saw with Dirichlet a%§ the divisqr problem. In this case the key convolution is

Vaughan’s identity . A second type of factorization that takes place concerns the
modulus: it is much easier to proceed if we can factor the modulus ¢ as, say dr where
d and r are roughly some pre-specified sizes. The simplest class of integers ¢ for which
this sort of thing is true is the y-smooth integers, those integers whose prime factors are
all < y. For example if we are given a y-smooth integer ¢ and we want ¢ = dr with d
not much smaller than D, then we select d to be the largest divisor of ¢ that is < D and
we see that D/y < d < D. This is precisely the class of moduli that Zhang Considered:m

Yitang Zhang’s Theorem There exist constants n,6 > 0 such that for any given
integer a, we have

T
S |pweo-
= ¢(q)
(q,a)=1
q s y—smooth
q squarefree

where Q = /2" and y = 20,

«a (lo;x) y (3.5)

Zhang h%lga]g%)roved his Theorem for n/2 = § = ﬁ, and the argument works provided
414n + 1720 < 1. We will prove this result, by a somewhat simpler proof, provided
162n+906 < 1. We expect this estimate holds for every n € [0,1/2] and every ¢ € (0,1],
but just proving it for any positive pair 1,6 > 0 is an extraordinary breakthrough that
has an enormous effect on number theory, since it is such an applicable result (and
technique). This is the technical result that truly lies at the heart of Zhang’s result
about bounded gaps between primes, and gketching a proof of this is the focus of the
second half of this article. starting section i%

3.2. A first result on gaps between pgrimes. We will now exploit the difference
veHeuristic

between the heuristic, presented in section [2.2] for the prime number theorem, and the
correct count.

Let m = ]—[pgyp, N 5 m? and x = mN, so that y ~ logm = %logw by the prime
number theorem, (@' We consider the primes in the short intervals

[mn+1,mn+ J] for N <n <2N

"We will prove this with v (z; ¢, a) := Yin<e, n<a (mod ¢ A(n) In place of 6(x; ¢, a). It is not difficult
1/2+0(1)

to show that the difference between the two sums is « z .
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with J = ylogy. Note that all of the short intervals are < (x, 2x]. The total number of
primes in all of these short intervals is

2N J
Z w(mn+ J) — m(mn + 1) Z m(2x;m, j) — w(x;m, j) Z logx
n=Nl j=1 1<j<J
(3m)=1
assuming (%é.&sﬂence, since the maximum is always at least the average,
J 1<j<J: (jym)=1
max W(mn + J) — ﬁ(mn + 1) #{ J (J m) }
ne(N2N) logs (@(m)/m)J
~ e J )
log x
ISieveHeuristic

using the prime number theorem, and Merten’s Theorem, as in section |_] Therefore
we have proved that there is in an interval of length J, between x and 2x, which has at

least ——4—— primes, and so there must be two that differ by < e 7logz.
g T

3.3. Hardy and Littlewood’s heuristic for the twin prime conjecture. The
rather elegant and natuy l.rlnlgkucr&s‘iiéjs for the quantitative twin prime conjecture, which
we described in section %,WWPH_OE the original way in which Hardy and Littlewood
made this extraordinary prediction. The genesis of their technique lies in the circle
method., that they developed together with Ramanujan. The idea is that one can
distinguish the integer 0 from all other integers, since

1 .
1 ifn=0;
t)dt = ’ 3.6 int
JO e(ni) {O otherwise, (3:6) [expintegrs

2mit

where, for any real number ¢, we write e(t) := e Notice that this is literally an
integral around the unit circle. Therefore to determine whether the two given primes p
and ¢ differ by 2, we simply determine

1
| etw—a-2n
0
If we sum this up over all p, ¢ < x, we find that the number of twin primes p,p + 2 <

equals, exactly,

D f (p—q—2)1) dtzL P()2e(~2t) dt, where P(t) = 3 e(pt).

PasT p<z
p,q primes p prime
In the circle method one next distinguishes between those parts of the integral which
are large (the major arcs), and those that are small (the minor arcs). Typically the
major arcs are small arcs around those t that are rationals with small denominators.
Here the width of the arc is about 1/x, and we wish to understand the contribution at
t = a/m, where (a,m) = 1. Note then that

P(a/m) = Z em(ab)m(x;m,b).

b (mod m)
(b,m)=1
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where €,,(b) = () = ™™ We note the easily proved identity
> en(rk) = ¢((k,m))u(m/(m, k).
r  (mod m), (r;m)=1
Assuming the prime number theorem for arithmetic progressions with a good error term
we therefore see that
x u(m) x
P(a/m) ~ ————— em(ab) = ——= .
d(m)logx , (r%d ) ¢(m)logx
(bym)=1

Hence in total we predict that the number of prime pairs p, p + 2 < z is roughly

=D DD YR [0 5 2 G a2 2.m)

m<Ma (a,m)=1 ¢(m) lOgZL’ >1

lquantPrimektuples
as in section 77, Moreover the analogous argument yields the more general conjecture

for prime pairs p,p + h.

log

Why doesn’t this argument lead to a proof of the twin prime conjecture? For the
moment we have little idea how to show that the minor arcs contribute very little.
Given that we do not know how to find cancelation amongst the minor arcs, we would
need to show that the integrand is typically very small on the minor arcs, meaning that
there is usually a lot of cancelation in the sums P(t). For now this is an important open
roblem. Nonetheless, it is this kind of argument that has led to Helfgott’s recent proof
21] that every odd integer = 3 is the sum of no more than three primes.
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4. GOLDSTON-PINTZ-YILDIRIM’S ARGUMENT

PV
We now give a version of the combinatorial argument of Goldston-Pintz-Yildirim f‘lﬁ],
which was the inspiration for proving that there are bounded gaps between primes:

4.1. The set up. Let H = (a; < ay < ... < a;) be an admissible k-tuple, and take
x > ag. Our goal is to select a function v for which v(n) = 0 for all n, such that

k
Z I/(TL)(Z 6(n + a;) —log 3z) > 0. (4.1)

r<n<2x

If we can do this then there must exist an integer n such that
k
n)(z 6(n + a;) —log3z) > 0.
In that case v(n) # 0 so that v(n) > 0, and therefore

k
Z O(n + a;) > log 3z.
i=1
However each n + a; < 2x + a, < 2z + x and so each 6(n + a;) < log3z. This implies
that at least two of the 8(n + a;) are non-zero, that is, at least two of n + ay,...,n+ ay
are prime.

A simple idea, but the difficulty comes in selecting the function v(n) with these prop-
. . Dv .
erties for which we can evaluate the sum. In )fTS] they had the further idea that they
could select v(n) so that it would be sensitive to when each n + a; is prime, or “al 08t tuole
prime”, and so they relied on the type of construction that we discussed in section E?_SC
In order that v(n) > 0 one can simply take it to be a square. Hence we select

v(n) = 2 A(d

d|P(n)

Ad) = M(d)% <10g R/d)’"

where

log R
when d € D, and A(d) = 0 otherwise, for some positive integer m = k + ¢, where D is a
subset of the squarefree integers in {1 ., R}, and we select R < 2'/3. In the argument
of 15] D includes all of the squarefree mtegers in {1,..., R}, whereas Zhang uses only
the y-smooth ones. Our formulation works in both cases.

4.2. Evaluating the sums, I. Now, expanding the above sum gives

!/

DTOAdDAd) [ DD D) On+a;)—logdz Y 1. (4.2)

di,d2 i=1z<n<2z r<n<2z
D::[ 1,d2] D"P(n) D|'P(TL)
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Let Q(D) be the set of congruence classes m (mod D) for which D|P(m); and let €;(D)
be the set of congruence classes m € Q(D) with (D, m +a;) = 1. Hence the parentheses
in the above line equals

Z Z Z 6(n + a;) —log 3z Z Z 1. (4.3)

= lmeQ D) r<n<2x meQ ) r<n<2x
n=m (mod D) n=m (mod D)

The final sum evidently equals x/D + O(1); the error term much smaller than the main
tepn. We will come back to these error terms a little later. For the first sums we expect
{%‘%olds, so that each

x
0(2z; D, m + a;) — 0(x; D, m + a;) 2D

We again neglect, for now, the error terms, and will substitute these two estimates into
the previous line. First though, note that the sets Q(D) and 2;(D) may be constructed
using the Chinese Remainder Theorem from the sets with D prime. Therefore if w(D) :=
|2(D)| then w(.) is a multiplicative function. Moreover each |€2;(p)| = w(p) — 1, which
we denote by w*(p), and each |Q;(D)| = w*(D), extending w* to be a multiplicative
function. Putting this altogether we obtain here a main term of

*(D D
— (log 3x)w(D)% =z (/{:L;((D)) — (log 33:)%) :
This is typically negative which is why we cannot simply take our weights to all be
positive. Substituting this in above we obtain, in total, the sums

w*(D) \ w(D)
x|k d%]z M)A (dg) 2 ) — (log 3x) dzd] Adi)A(d2) == |- (4.4)
D:=[d1,dz] D:=[d1,dz]

We shall explain a little later how these were evaluated in TI%V] First though let’s return
to the error terms:

4.3. Bounding the error terms. The first one above, from counting integers in an
arithmetic progression, yields in total,

& Z IA(dy)[|A(d2)|log 3z < R*log 3z < 2*/3log 3z,
d1,d2<R
since each |A(d)| < 1 by definition. For the second one we will need our bound on primes
in arithmetic progression: For any integer b we have
!
> ‘H(X; D,b) —

D<Q
(D,b)=1

X

o(D)| “* Tog X)7 )

where the constant depends only on A. Here Q = z'2" and the restriction S is
vacuous if we assume the Elliott-Halberstam conjecture, and means that D is y-smooth
if we are using Zhang’s estimate.

PNTassump
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Using the same bounds |A(d)| < 1, we have the upper bound on the second term of

!/
< Z Z Z 0(2x; D,m + a;) — 0(x; D,m + a;) — .
dy,d i=1 mEQ gb(D)
D:=[d
Let O;(D) = QI(D) + a; (which may also be constructed from the O;(p) using the
Chinese Remainder Theorem). Note that |O;(D)| = wi(D) < (k — 1)*(") where, here,
w(D) denotes the number of distinct prime factors of D. Each D that appears is

squarefree and is < R?, and can occur for at most 3*() pairs dy, ds. Since 7(D) = 2¢(P)
we deduce that, for A =log(3(k —1))/log2, the above is

DI o 2,

(4.6)
i=1 X=z or 2z D<Q Z( )beOi(D)

0(X;D,b) —

—‘

Now let m be the lem of the integers D < @, counted in the sum. Notice that O;(m)
reduced mod D, gives w;(m/D) copies of O;(D), and hence

1 X 1 X
0(X;D,b) — = O(X:D,b) — ——1|,
D), 2, [P s e 2 XD =5
so that the quantity in @ equals
k !
1 X
7(D)*0(X; D, b) — —‘} : (4.7)

; X=;;r 2z wl(m) be(%(:m) {DZSJQ ¢<D)

Now fix k, X and b. To bound the sum over D we need to remove the 7(D)# term,
which we do by Cauchying. It will help to notice the trivial bounds 0 < 6(X; D, b) «
(X log X)/D, so that D|0(X; D,b) — | « Xlog X. Hence

(2 (D)

D<Q

¢(D
2
X (D)4 X
Q(X;D,b)——D < : D|0(X;D,b) — ——
& b & D)
! X
< X(log X)* —‘
P oD
5
and this is «c X?/(log X)© for any C, by (%a._ssﬁu%%ce the quantity in @’is

La k

2

(log X)4°

for any A > 0, which is acceptable.

4.4. Perro&’s formula. ere are two methods to calculate the main terms, one more
analytic ()fTS]), the other, BZI TG , more combinatorial. We shall outline both

It is possible to obtain an asymptotic estimate for the mean value of multiplicative
functions ¢ for which g(p) is “close” to some given integer k, for all sufficiently large p.
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The Selberg-Delange theorem tells us that

2@~n(1+@+g(p;)+...> (1—1>k-(10if)k.

n<x psT p p p

When g¢(p) is sufficiently close to some k that the Euler product converges, we can
replace the product up to x, by the product over all primes p in the line above. This
makes this formula easy to manipulate' in particular, by partial summation, we obtain

)k+€

(log(z/n log
Zg g /)) ’”C(Q)((ngrg),

(4.8) |sD+

n<w

for kK > 1, ¢ = 0 using the beta integral Sé(l —v)*tdv = (k — 1)10!/(k + £)!, where

clg) = [] <1+@+g(pj)+...> (1_1)k.

p prime p p p

4.5. The combinatorial approach. We will suppose for now that the A(d) remain
unchosen. We need to evaluate the sums

3 A(dl)x(dg)“g((g)) and Y )\(dl)A(dz)w(é)).

D:=[d1,d2] D:=[d1,d2]

d
As shown by Soundararajan Téjziu]u,_we may evaluate these much like Selberg does in his
upper bound sieve. The main idea is a change of variable: Let ¢, be the multiplicative
function (defined here, only on squarefree integers) for which ¢, (p) = p — w(p), and
then

' wD) _  wD) d < oy(rw(r) dy < y(s)w(s)
Z A(dl))‘(d2) - Z u(dl)w(dl) T:Zd}r (bw(r) ’u(dQ)u.J(dg) s:%;8 (bw(s)

e )y | (A1, d2)
TLTam el A MO

di|r, dals

By writing d; = e; f; where e;|(r,s) and fi|r/(r,s), fa|s/(r,s), we see that the sum over
fj equals 0 unless r/(r,s) = s/(r,s) = 1; that is » = s. Hence the above is

_ o uneln)? g (didz)
_; P (r)? dl,zd;‘ru(dl)ﬂ(dﬂw((dhdz))
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Letting g = (dy,d2) and writing d; = gey, dy = ges, so gejes|r, we see that the sum
over e; is 0 unless r = ge;. The above becomes

SRBICANCA zy oy 9 = zy (49
dy,d2 glr
D:=[d;,d2]

One can similarly show that

; A(dl)A(dz)O:;((DD)) - Z y*(;f(i ) ) (4.10)
where o
Y (r) = Tnzn%
We select

C(a)(log(z#))g if r is squarefree, and r < R;
0 otherwise,

in the notation of section 2.5 By |W' this implies that

y*(r) ~ yera(r);

(k+0)!

Ad) = {1+ 0(1)}‘/l(d)M if d is squarefree, and d < R;
0 otherwise.

Moreover (@) also implies that

vel 20\ (lo R)’H%
@ o) -G

and
2 2£ + 2 1 R k+20+1
G152~ (o) . (log R)™™7
C+1/) (k+20+1)
—thm
4.6. Finding a positive di erence; the proof of Theorem . Now inserting
these last two estimates into we obtain

k 2042 C(a) 1 20 C(a)
(g () T~ 0 o010 (7))

C(a)zlog 3z k 2042\ [2log@Q 1 20+ 1
S _ (1 1 1
4(log R)F+20 (k:+2€+1)!(€+1) (10g3x o)\ ) el
hm

1
as Q = R%. This is > 0 if @@h’olds, and so we deduce Theorem
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4.7. The challenge in completing the proof of Zhang’s Theorem. We modify
the proof in the last section suitably. In the arguments above we replace y and y*, by
z and z*, where we select

C (a)(log(e#))z if r is squarefree, y-smooth and r < R;
0 otherwise,

1
We bound TGwith 2 in place of y) from above, trivially, as follows:

z(r)2w(r) y(r)%w(r) 20\ (log R)*+2%
2 Gu(r) <Zrl b (1) NC(M(@)' (k+20)!

r

from the calculation in the previous section.

To bound (@ggwith z in place of y) from below, is more subtle. Notice that each term
is = 0, so we have a lower bound by restricting attention to only those r € [R/y, R]
which are y-smooth. Now if y(n) # 0 and r|n then n/r < R/r < y, and so n is y-smooth;
hence

e z(n) (n) Iﬂ_*
SRV oL YR IE o B

n: rln n: rln
n is y-smooth n is y-smooth

Therefore

()W (r) ()W (r) y* () (r)
L= Z%}Q 8u(T) R/g@ G

r is y-smooth

2%2

R/y<r<R p|r
p>y
Z/ y*( ?/
IR I v I

plr

Now, by @, we have

y*( w(p) —1 20+ 2\ (log R/p)k+2+1
’;% d)“ Sl .C(G)(“l)' (k + 20+ 1)!
plr

Summing this over y < p < R, and as w(p) < k and R/p < R/y we deduce that

k12041 20 + 2 log R)F+20+1
E,;f . < (k—1)log(1/0)(1 —9) CU(gL)'%
plr
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If one proceeds as in the proof of (@} i.e. by partial summation) one obtains
3 y*(r)*w(r) So (L —v)*o" oyt (r)’w (r)
r<R/y 9 (1) So votde o Gulr)

(k + 20)! - 20+ 2\ (log R)k+26+1
< (k—1)!(2£)!(1_5) 'C(a)(eﬂ) C(k+20+1)]

Assuming that ¢ = v/k, we deduce that

2%(r)2w* (r 20+1 k 20+2 log )
Z%z{u()(k (1-9) )}C(G)QL) %

Proceeding as in the previous section (with z in place of y) and taking @) = 22+ with
L =20+ 1 =k, we are successful provided

2
L+2p>1+ 2+ O(1/k + k“(1 — 6)%) + o(1),
which works for 6 = (2L1logk)/k and n = 2/L.

4.8. Numerics. Later we will show that we may work here under the assumption that
1621 + 906 < 1. The above inequalities hold (more-or-less) with L = 863,k = L* and
n=1/(L —1). Hence we should be able to take k < 750,000 and B ~ 107.

RemC 4.1 These arguments actually give quantitative information: One can deduce
ﬁ% Al 1f ‘H is an admissible k-tuple and x is sufficiently large, then there are
>> z/log" x values of n € [z, 2x] such that n + H contains two primes. In justifying our
weights we claimed that they are “sensitive” to all of the elements of n+H being prime:
To be more explicit, one can further prove that all of the elements of n + H have no
prime factors less than z¢ (for some fixed ¢ > 0), as well as two of them being prime.
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5. DISTRIBUTION IN ARITHMETIC PROGRESSIONS

assum
Our goal, in the rest of the article, is to prove . In this section we will see how

this question, fits into a more general framework, as developed by Bombieri, Friedlander
and Iwaniec%g , so that the results here should allow us to deduce analogous results for
interesting arithmetic sequences other than the primes.

5.1. General sequence in arithmetic progressions with large common differ-
ences. One can ask whether any given sequence (f5,),>1 € C is well-distributed in
arithmetic progressions. To this end we might ask that it is well-distributed in a range
analogous to . Therefore we say that [ satisfies a Siegel-Walfisz condition if, for
any fixed A > 0, and whenever (a,q) = 1, we have

1 1]
Bn — = Bn| €4 77 >
2 PTEw 2 P g
n=a (mod q) (n,g)=1
with |[8]| = ||5]|2 where, as usual,
18]l = (Z |ﬁn|p> :
n<r

It is necessary to have a term like ||3| on the right-hand side to account for the size of
the terms of the sequence 3. [| Note that this estimate is trivial if ¢ > (logz)?** (after
Cauchying), so is only of interest for x very large compared to q.

Using the large sieve, Bombieri, Friedlander and Iwaniec %ﬁlwere able to prove two
extraordinary results. In the first they showed that if 3 satisfies a Siegel-Walfisz con-
ditionﬂ then it is well-distributed for almost all arithmetic progressions a (mod q), for
almost all ¢ < z/(logz)P:

Theorem 5.1. Suppose that the sequence of complex numbers B,,n < x satisfies a
Siegel-Walfisz condition. For any A > 0 there exists B = B(A) > 0 such that
2

1 9y T
Z Z Z Bn_m Z ﬁn < ”6“ (IOgI)A

4<Q a: (aq)=1 |n=a (mod q) (nq)=1

where Q = z/(log z)B.

The analogous result for A(n) is known as the Barban-Davenport-Halberstam theorem
and in this case one can even obtain an asymptotic.

8 Analogously, we might have used |3|l,z'~+ for any r > 1 in place of |8|zz. This bound is trivial
for ¢ = (log z)A"/("=1) by Holdering (instead of Cauchying).
gfggrofple}&gondition appears to be weaker than that assumed here, but is actually equivalent by Lemma
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In the second result they show that rather general convolutions are well-distributed for
all arithmetic progressions a (mod gq), for almost all ¢ < 2'/?/(log x)5:

Theorem 5.2. Suppose that we have two sequences of compler numbers «a,,, M <
m < 2M, and B,, N <n < 2N, where 3, satisfies the Siegel-Walfisz condition. For any
A > 0 there exists B = B(A) > 0 such that

1/2

1 T
q;) e > (@*5)(%)—@( (axB)(n)] < ||aHIIBH—(Ing)A

where Q = x'/2/(logx)®, provided v = MN with 2 « M, N « x'~.

n=a (mod q) n,q)=1

In fact their proof works provided N > exp((logz)¢) and M = (log z)?5+4.

This allowed them to give a proof of the Bombieri-Vinogradov theorem for primes that
seems to be less dependent on very specific properties of the primes (as we will see in
the next subsection). The subject, though, had long been stuck with the bound z'/? on
the moduli[™

i
Bombieri, Friedlander and Iwaniec H)T)’ﬁ‘made the following conjecture.E They noted that
in many applications, it suffices to work with a fixed (as is true in the application here).

Conjecture 5.3. Suppose that we have two sequences of complex numbers o,,, M <
m < 2M, and ,, N <n < 2N, where 8, satisfies the Siegel-Walfisz condition. For any
A,e > 0, and every integer a, we have

1 II/Q

5|2 @hm-gn 3 e ae) <ol

¢<Q |n=a (mod q) n,q)=1
(g.a)=1

where Q = x17¢, provided v = M N with ¢ « M, N « z' €.

The extraordinary work of Zhang breaks through the y/x barrier in some generality,
working with moduli slightly larger than x'/2. In this case the moduli are y-smooth,
with y = 2%; here we say that ¢ is y-smooth if all of its prime factors are < y, that is
P(q) <y, where we write P(q) for ¢’s largest prime factor.

We say that a = 3 satisfies the average sieving condition if for each fixed A > 0, we have
1/2

> > 18] < 1Bl = (log )W,

A
9<Q z<mn<z+z/(logz)* (log .73)
mn=a (mod q)

10 . . . 1/2 . 1_2 .
There had been some partial progress with moduli > =/, as in [4], but no upper bounds which
“win” by an arbitrary power of logx (which is what is essential to applications).
HThey actually conjectured that one can take Q = x/(logx)B. They also conjectured that if one
assumes the Siegel-Walfisz condition with |||, N'~* in place of | 3| Nz then we may replace || 3]/
in the upper bound here by o[ M=+ |B|N1~=.
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for any Q < z%3. We say that a = (8 satisfies the necessary sieving condition if both

a3 and ot « B4 satisfy the average sieving condition. It is not difficult to show that
these conditions hold if, for instance, |a(n)|, |3(n)| « (7(n)logz)°®) for all n.

The key result is as follows:

Theorem 5.4. There exist constants n,6 > 0 with the following property. Suppose that
we have two sequences of complex numbers a,,, M <m < 2M, and 5,, N <n < 2N,
where [ satisfies the Siegel-Walfisz condition, and that o = 5 satisfies the necessary
sieving condition. For any A > 0, for any integer a,

1 1/2

s
% % q)(a*ﬂ)(N)——¢(q) (glm*ﬁ)(n) <alollBl g yr
P(g)<z®
(Q7a):1

q squarefree
where Q = /2% provided z'/* « N < M « x%/3.

Corollary 5.5. There exist constants 1,0 > 0 with the following property. Suppose
that we have two sequences of complexr numbers oy, B, % < m,n < x??, which
both uniformly satisfy the Siegel-Walfisz condition, and that o = 3 satisfies the necessary
sieving condition. For any A > 0, for any integer a,

1 1/2

s
q;) ; (@ ) = 515 ; o+ B)(m)| a8l e
P(q)<a® n=a (mod q) (n,g)=1

(g,0)=1
q squarefree

where Q = xV/241,

BVuiderange BVdyadicrange
Proof. of Corollary [5.5 Theorem p.4 gives the result when the support for both a and

B are within dyadic intervals. Here we deduce the result over wider ranges of m and n
with mn < z for some given x.

Let T' = (logz)#, and R be the smallest integer with (1+1/T)% > z. Let S;; be the set
of pairs (m, n) with (1+1/T)* < m < (1+1/T)*!, (1+1/T) < n < (1+1/T)?*!. Notice
that if i + j < R—3 and (m,n) € S;; then mn < (1 + 1/T)"+ 2 < (1+1/T)F ! <.
Finally let Sy be the set of pairs (m,n) with mn < z, that are not included in any of the
S, withi+j < R=3. If (m,n) € Sy then mn > (1+1/T)" = (1+1/T)"*2 = x(1-3/T).

Now, by the triangle inequality, the sum over all pairs m, n is bounded by the sum, for

h such set S, over the sums for (m,n) € S. For any S of the form .5; ; we use Theorem
%},ﬁﬂﬁr‘%@placed by 3A 4+ 2. For S = Sy we get the bound from the hypothesis that
a = [ satisfies the average sieving condition. The result follows from summing these
bounds. U
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5.2. Vaughan’s identity, and the deduction of the main 1%%&)&' fcor primes.

We will bound each term that arises from Vaughan’s identity, rewritten as,

A=Ayv+ppg+L—pysAoy 1+ psys Aoy =1
To start with, note that
V
Z Z Aoy(n) < Z <—+1> logV « Vleg?z + Qlog
4<Qn=aq (mod q) q<Q q

which is an acceptable error term when we let U = V = z/3, with Q < z*3-°(),

Next we estimate the second term in Vaughan’s identity:

Y (uewD)m)= Y pw) Y Lim)

r<n<2z u<U z/u<m<2z/u
n=a (mod q) (u,q)=1 m=a/u (mod q)
x 4z
= Z () <—(log — — 1)+ O(log x)) :
u<U uq u

(U7Q):l

By averaging over all arithmetic progressions a mod ¢ with (a,q) = 1, we obtain the
same estimate for 1/¢(q) times the same sum over n with (n,q) = 1. Therefore the
difference is

1

Do (new D) ——= > (pew+L)(n) < ), logz « Ulogz.
r<n<2z (b(q) r<n<2zr u<U

n=a (mod q) (n,g)=1 (u,q)=1

Now summing over all ¢ < Q, yields a contribution of « UQlogx « x/(logz)” for any
A.
We will further write

pv* Ay sl =pp s Aoy = 1ogy + (e Ny * 1opv,

and we now deal with the second part, much as the above, noting that |(u = A) -y (u)| <
|(1+A)op(u)| <logu < logz:

Y (N =lapv)(n) = Y (uxA)eu(u) > 1

r<n<2x u<U max{z/u,UV}<m<2z/u
n£a< (mod q) (u,q<)=1 rr{L=/a/u (};0d<q) /
1 2%
= X (e M) ( ( — max{e/u, UV)) + Ofloga) )
u<U
(u,q)=1

from which we deduce, by averaging over all arithmetic progressions a mod ¢ with

(a,q) =1,
Z ((,W‘A)<U”°1>UV)(”)—L Z () <v*lspv)(n) < Z logz « Ulogx.

r<n<2c ¢(q) r<n<2zr u<U
n=a (mod q) (n,q)=1 (u,q)=1

Now summing over all ¢ < Q, yields a contribution of « UQlogz « x/(logx)* for any
A.
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We are now left to work with two sums of convolutions:

Y. (new = Aey)(m)lpy(n) and D, (Asv D) (m)psu(n),

mn=x mn=x
mn=a (mod q) mn=a (mod q)

where /3 « m,n « %3, and each convolution takes the form a(m)B3(n) where |a(m)| <

logm, |8(n)] <1, a and [ satisfy the Siegel-Walfisz CriterionB and b satisfies the
necessary sieving condition (since . We can therefore apply Corollary 0 each such
sum, and the result follows.

12\We need to change things a bit since SW is not known for the convolution. Some version can be
deduced though with upper bound in terms of the 2-norms of the two original sequences, rather than
the 2-norm of the convolution.
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6. PRELIMINARY REDUCTIONS
pre im-re

We ;g% %}&9\% a%hgough several straightforward manipulations, how we can reduce Theo-

rem o proving the following result. As before, P(q) denotes the largest prime factor
of ¢, and now, p(q) denotes the smallest prime factor of q.

ReducedRange| Theorem 6.1. Fix constants n,0,A > 0. Suppose that we have two sequences of
complex numbers «o,,, M < m < 2M, and B,,N < n < 2N, where 3, satisfies
the Siegel-Walfisz condition, and « = 3 satisfies the necessary sieving condition, where
'3 « N < M « 2?3, with x = MN. Suppose also that N/(yz€) < R < N/z¢ and
22 /(logz)? < QR < 22", where y := 2°. For any A > 0, for any integers a, b,/
with p(abb’) >y, we have

L1/2
2, 2 2 eBm— 3 (@ B)m)| <alallBlg
¢€[Q,2Q] re[R,2R], |n=a (mod r) n=a (mod r)
Do<p(g)<P(q)<y P(r)<y  |n=b (mod q) n=b' (mod q)

qr squarefree

(6.1)

where Dy = x¢/leglogz,

We will prove this result for any 7, > 0 satisfying 1627 4+ 906 < 1.

The proof of this result, and indeed of all the results in the literature of this type,
use Linnik’s dispersion method. The idea is to express the fact that n belongs to
an arithmetic progression using Fourier analysis; summing up over n gives us a main
term plus a sum of exponential sums, and then the challenge is to bound each of these
exponential sums. In this case we do so by using long-established bounds for exponential
sums over finite fields. After some preliminary reductions in this section we will proceed
to develop the necessary theory of exponential sums in the following two sections, and
then see how these may be used to resolve our problem in the final section. Although
this proof is a little technical, it is not especially deep (indeed considerably less deep
than previous developments in this area), thanks to the polymath8 project.

ucedRange adicrange adicrange
Proof. that Theorem WTh@or@m %Lﬂe_sgﬁm in Theorem %’m%u
moduli d 522> with P(d) < y, with (d,a) = 1. The Bombieri-Vinogradov theorem
(Theorem [5.2]J, gives the desired estimate for all d < x/2/(log z)?, so we may restrict our
attention to the remaining d. Moreover we may split this range into dyadic intervals,
so we may assume that D < d < 2D where z'/2/(logz)? < D < 2'/?*". As in the
hypothesis, we have that d is squarefree, with P(d) < y.

We now show that we may assume that (a,d) =1 for all such d: Let m =[], p, and
r = m/(a,m). Select an integer b with b = a (mod r) and b = 1 (mod (a,m)), which
is possible by the Chinese Remainder Theorem. Hence if (d,a) = 1 then (d,b) = 1 and
b = a (mod d), so proving the above estimate for b implies the above estimate for a.
The one difference is that (b,d) = 1 for all the d in our range.
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Next we show that we may restrict our attention to those d with v(d) < C'loglogx,
that is that have < C'loglog x prime factors. By Cauchying twice, the square of

> > axp)m)l, (6.2)

D<d<2D n=a (mod d)
P(d)<a?’
v(d)>C'loglogx
d squarefree

< Y Y5 Y leAmP

D<d<2D D<d<2D n=a (mod d)
v(d)>C'loglog P(d)<a?

1S

To bound the first term here we use the Hardy-Ramanujan result that

r (loglogz + O(1))F 1
IIRES: |
= ogx (k—1)!
v(n)=k

To bound the second term we note that |(a=3)(n)]* < 7(n)(|a|?*=|5|*)(n) by Cauchying,
so that
2

> > =gl | < X IO > (a8l (n):;

D<d<2D n=a (mod d) D<d<2D n=a (mod d) D<d<2D n=a (mod d)

which implies that

> Y e B)@)P <« al3I8IE +¥* (log ).

D<d<2D n=a (mod d)

using the average sieving condition for at « f* with A = 0. hence the quantity in
:E? 1S

D z 222 .3/4 o(1) ||04H |8]s =™*
< (gogsyotmemr - JaRIBIE ¥ toga) ) o 1A,

by taking C sufficiently large. Now |al|| 8]l /2 < |a|s||B]ls 7/® by Holder’s inequality,
and we should really state our result in terms of these 8-norms. But for now we will
assume that ||a|s]8]s 2% « ||| | #'/?(log 2)°™) so we can express our result in terms
of 2-norms.

The reason for restricting the values of d as in the last paragraph is that it allows us to
factor d in a convenient way. If d = p1ps...p, With p1 < py < ... < p,, then select r of
the form pips ... p, as large as possible with » < N/z¢. Evidently r > N/(yz¢) > 2'/*.

d .
ote also a ¢ 0, €lse I % < ’ S x i 1I € were cnosen
Note also that p, > Dy, else r < Db < Di\W < DSlosloss o p0c g1/ i h

131f we Cauchy instead by taking |(a * 8)(n)|? < (1 # |a|?)(n)(1  |8]?)(n) then

o+ B < (Z(l*lal )(n)(1 = |B%) > <Z )(L# o) (n) - DI r(n)(1 = |8*)(n).

n n

The first term in this product is 3, |a(a)* 3,
that o B < as|B]s 2 (log 2)>*.

7(n) « Y, |a(a)|*r(a)- N log N. We eventually show

n: aln
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sufficiently small. Writing d = gr we, see tlaﬁ (eq > pp > Dy. Hence there exists R and
@ as in the hypothesis of Theorem i%i 1th

€ [Q,2Q], Dy <p(q) < P(g) <y andre€[R,2R], P(r)<uy.
We will apply the factorization, with v = a =

1
Z v(n) — olqr) 27 v(n) =

n=a (mod gqr)

1 1 1
(n) = — v(n) + —— 1(n) = —= 7(n)
n=a ;nod q) (n%l ¢(q) (n,q)= Qb(’f’) (n%l

n=a (modr) n=a (modr) n=a (mod ) (n,r)=1

ucedRange .
For the first terms we apply Theorem i% with b = a, for each b’ (mod ¢) with (¢/,q) =1
and average, to obtain by the triangle inequality

1 331/2
D > >, ) - @ D, )] «a HMHWHW,
q€[Q,2Q] T€[R,2R], In=a (mod q) q (n,q)=1 &
Do<p(q)<P(q)<y  P(r)<y |n=a (mod r) n=a (mod r)
(6.3)

For the second terms we take absolute values and sum over ¢ and r separately to obtain
the upper bound

1 1
> 5@ > > ’Y(n)—% PRIDIE

q<zl/? r<gl/2—¢ (n,q)=1 (n,q)=1
n=a (mod r) (n,r)=1
. oprime . . L.
Now in Lemma elow, w w that (3,1(,,q)-1 satisfies a Siegel-Walfisz condition,

since (3, does. By Theorem (with o and 3 replaced by a,1g-1 and B,1(nq)-1,
respectively), we deduce that 7, 1(,,4)—1 satisfies a Bombieri-Vinogradov Theorem. Sub-
stituting this into the last equation gives

212

<a Y glollfl g

q<a:1/2
and the result follows. U
Lemma 6.2. If 3, satisfies a Siegel-Walfisz condition then for any m > 1 we have

1

1 N2
> @%-m > 5n «T(m )HBHW

n=a (mod q) n: (n,mq)=
(n,m)=1

Proof. of Lemma %ay assume that ¢ < (log N)2¢ else, by Cauchying,

2

N

n=a (mod q) n=a (mod q)
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And then, by averaging this over all a with (a,q) = 1, one deduces the result provided

q > (log N)%¢.

Now for an arbitrary m we decompose the sum as

Do Bu=Domd) > B

n=a (mod q) dlm n=a (mod q)
(n,m)=1 din

and, Cauchying, the square of the sum here, over d > (log N)?¢ is

N N
< 7(m BIP— < 7(m)?| 8| ———.
) 3 1A < o
d=(log N)2¢
For the smaller d we use the identity

Yo Ba=mr) Y, Y, B

n=a (mod q) r|d b: (byr)=1n=a (mod q)
n=0 (mod d) n=b (mod r)

Applying the Siegel-Walfisz condition for each such modulus ¢r (with C' replaced by

6C') we obtain an upper bound

1

N% N2
d<(l§mw%¢(r)|5w < ”ﬁHW
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7. COMPLETE EXPONENTIAL SUMS

. euristic . .
In section @ we developed some notation for exponentials, for example eq(a) = e(%).

For a rational number a/b we have to be a little more careful in defining e,(a/b): If b
has a factor in common with ¢ then define e,(a/b) = 0. If (b, ¢) = 1, select ¢ (mod ¢) so
that bc = a (mod ¢) and then define e,(a/b) = ¢,(c), and note that this is well-defined.

In this section we will obtain upper bounds for  e,(f(n)) where f(z) is a rational
function, and the sum is over all n € (Z/qZ)* for which the denominator of f(n) is
coprime to ¢. By a rational function we mean that f(x) = P(z)/Q(z) for some P,Q €
Z|x] and we define deg f = max(deg P, deg Q). We will then derive such bounds, for
squarefree ¢, from bounds for primes p, using the following consequence of the Chinese
remainder theorem yields: If ¢q,..., ¢ are pairwise coprime natural numbers, then for
any integer a and q := ¢ ... q. we have

k
(7.1)
11 < (4/95) >
In particular this implies that

S el =TT % o (2

neZ/qZ plqg neZ/pZ

)> : (7.2)
7.1. Two special cases. If f(z) = ax + b then
q—1 . ..
aj q eq(b) if ¢ divides a;
+b) = e,4(b
;eq(ax ) = el )Jzoe ( q ) {O otherwise ,

t 1
the discrete analogue of 1|§=§1§n i rfi z) = ¢/(x + d) with ¢ # 0 (mod p), then we make
the change of variable x = ¢/y —d, which is a bijection from = € F,\{—d} — y € F,\{0},

so that
% () - Saw -1 (73)

T€ZL/pZ y#0

h
This can be combined with (%e_xﬁ%‘educe the following (see f ag%’roposnlon 11)):

Lemma 7.1. Let dy, ds be natural numbers with [dy, ds] square-free, and let ¢1, ¢, 11,1y
be integers. Then

C C
Y e (o) (727) | < Cenddten e,

nGZ/[dl ,d2]Z

where d; = d;/(dy,ds) fori=1,2.

Proof. We will prove the p-component of this bound for each prime divisor p of d
and then deduce the full result using the Chinese Remainder Theorem, as in , as
the right-hand side of our bound is a multiplicative function.

CRTgeneral
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The bound is trivial if (¢, d}), (¢c2,d}), or (dq,dsy) is equal to p, since there are no more

than p terms in the sum, so we may assume without loss of generality hate rdslesflm D,
dy = 1, and ¢; is coprime to p. The result then follows immediately from l

Notice that this bound is probably improvable, since we have not exploited any possible
cancelation in the sums for the primes that divide (dy,ds).

7.2. The deeper theory of exponential sums. In general there is some significant
cancelation in exponential sums, and we now discuss those deeper results (due primarily
to Weil) that we need. In fact one can as easily state rather general results, but we will

only use those results when f takes the form
S, or L4 b + cx, or ¢ + b + cx (7.4)
T ’ r x4/ ’ z(x+k) (x+0)(x+L+k) '

for any given integers a, b, ¢, k, ¢, with k,¢ % 0 (mod p).

needExpSun

i {111
The Weil conjectures for curves P{IB’e’T]}l (proven for arbitrary varities by Deligne in W’? ),

imply “square root cancellation” for various natural exponential sums over finite fields
(note that Z/pZ is isomorphic to the finite field F),).

Lemma 7.2. If p is prime p and f(z) is a rational function in F,|X| of degree d, with
1 <d<p, then

> e (f(@)

z€lF,

& dy/p. (7.5)

This bound follows from the Weil conjectures applied to y* —y = P( A% I(gsn)ein F,. An
elementary proof based on Stepanov’s method may also be found in Tfﬁ .

Setting d < p is natural, in that, for examples like f(z) = g(x)? — g(z) + ¢, we see that
f(n) (mod p) is constant by Fermat’s little theorem, so there would be no cancelation
in the exponential sum.

We do not need to obtain the full square root cancellation in (@} in our work here:
Any bound of the form p° for some fixed ¢ < % would suffice in our argument. This

gives hope that there may be a more elementary argument.
ime-e
We next extend Lemma i(li to s}((luare-free moduli:

For ¢ an integer and f(z) a rational function, define (g, f) to be the largest integer
m dividing ¢ for which f(z) = 0 (mod m). It is not difficult to show that if f(z)
is a rational function for which f’(z) = 0 (mod p) then f(z) = g(x)? (mod p) for
some rational function g(z)[”| Hence if p > deg f then f(z) = & = ¢ (mod p), for
some constant c. This generalizes to: If f’(z) = 0 (mod ¢), when ¢ is squarefree and
deg f < p for every prime p dividing ¢, then f(x) = ¢ (mod q).

MBﬁmmmMmmd%P+®gQWMWf=PW}H&@PZd%Qﬂmmwﬁmwm%Md%P—®gQ
so P/@Q — hP has lower degree. Otherwise replace f by 1/f.
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Proposition 7.3. Let q be a squarefree positive integer, and let f € Z(X) be a rational
function of degree d. There exists a constant A = Ay, for which

e n (A2 (f';q)
Z/ (F00)| < (@) 0 S

For f(t) := at + b/t we get the bound « 7(¢q)%¢"/?*(a, b, q)/(2b, q)'/?, slightly weaker than
Weil’s Kloosterman sum bound.

Pro \e]\;{es‘%u prove the result for ¢ = p prime, and then the result follows in general,
by , as the right hand side of the result is a multiplicative function in q.

Note that the sum has p terms, each of absolute value 1, so the sum has absolute value
< p, by the triangle inequality. Therefore we may henceforth assume that p > deg f,
since the result follows for the finitely many primes p < deg f, simply by taking A
sufficiently large. It also follows when p|f’ since then p|f” and so the upper bound is
P A(f ) /(" p)* = p.
ime-ex

Hence we may assume that p 1 f'. If p { f” then the result follows from Lemma [72]
If p|f” then, as we noted above, f'(x) = ¢ (mod p) for some integer c¢. But then
g(x) = f(x) — cx satsifies ¢'(x) = 0 (mod p) and so there exists an integer d for which
g(x) =d (mod p); that is f(x) = cx+d (mod p). But then the sum = 0 and the result
follows. O
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8. INCOMPLETE EXPONENTIAL SUMS

In the previous section we bounded “complete” exponential sums Y e(f(n)/q) in which
the summation variable n ranges over the whole cyclic group Z/qZ or, equivalently, the
integers in an interval of length ¢. For arithmetic applications we typically need to
obtain non-trivial bounds when n varies over a shorter interval, an “incomplete sum”.
To do this we use the bounds obtained for the complete sums, by invoking what is, in
effect, the discrete Fourier transform:

fhy:= 3 f(b)eg(hd), (8.1)

b (mod q)

for any function f of period g. One begins with the trivial observation that

Z eq((m—a)b)z{l ime.a (mod q),

1
q, (mod q) 0 otherwise.

Hence, summing f(a), times the characteristic function I(a) for the interval I, we obtain

D fm)y =Y Im)f(m) = > I(m) 3} fla) -+ >, ellm—a)b)

mel m m (mod q) a (mod q) b (mod q)
1
=3 > Y, L(m)e,(mb) Y, fla)ey(—ab)
b (modgq) \m (mod q) a (mod q)
1 A A
q b (mod q)

which can be viewed as an example of Plancherel’s formula. Typically we might expect
to have a “main term” given by b = 0; that is

i0)f(0) = |1 g )

a (mod q)

|

the length of the interval, times the average of f. In order to prove this is dominant
we will need to have some control of the other terms. The Fourier transform of the
characteristic function for an interval does have some considerable cancellation: If the
interval is [x,x + M) and 1 < |b| < ¢/2 then

Z b(z + 7)) = e,(bx) -%.

The numerator has absolute value < 2 and, using the Taylor expansion, the denominator
has absolute value = |b|/q. Hence

[1(0)] « min{M, ¢/[b]},
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and so we deduce that

fo) M ; 1/ (b)]
D fm) = 1] =%« — HOIEESY >
el q 1<|bl<g/M o/ M<|b|<q/2
1 .
< X oo X o)
0<j<J 7 1<|h|<H;
H;:=27g/M

where J is the largest integer for which 27 < M. We deduce that

f(0)
> f(m) =11 | ClogM - max IS (8:2)

mel

For the example f = 3. ¢;li=a, (mod ¢y Where I is the interval of length (M,2M], we
obtain the bound

Sel Y 1-Yl« ¥ i

i m=M q 0<ji<J
m=a; (mod q) Hj:=27q/M

Z cieq(a;h)|.

i

(8.3)

1<|h|<H;

ound

We will insert the estimates of Proposition ﬁ%nto @% @@t%_x%aﬁtain “square-
root cancellation” for incomplete exponential sums of the form | Y e,( f%ﬂ for various
moduli ¢, with the su over 1 in an interval of length N < ¢ (as in [38]). However,
Graham and Ringrosen%‘l'? showed that we can improve the (analogous) incomplete
ch racter sum bounds for smaller N when ¢ is smooth, and we do so here, following
FFS'U , for incomplete exponential sums.

Proposition 8.1. Let q be a square-free integer, and let [ = g with P,Q € Z[X] and
deg(P) < deg(Q) « 1. Suppose that (¢, f) = 1, and write ), for >, _x.

(i) We have the bound

Sealso) « (5 +1owa) 7t (5.4)
(i) If ¢ = q1q2 and N < q then
Dealfm)] « (a0 + @) 7(@)* (log ) N2 (8.5)

(1ii) If q is y-smooth and N < q then

« 7(q)*(qy)*(log ) N'/2.

D ealf(n)

Proof. We may assume that ¢ has no prime factors < deg f, else one can factor ¢ = qoq’
where ¢q is the product of all the prime factors of ¢ that are < deg f, split the summation
over n into residue classes mod ¢, and then apply the result mod ¢’ to each of the

ExponExpan
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subsums. This then implies that (g, f'+ h) = (¢, f") = 1 else, as p > deg f, we see that
f=corct+d (mod p), but this is impossible by the hypothesis.

il
Now by Proposition ﬁ“we have, for F'(n) = e,(f(n)), that

F(hy= > e(f(b)+hb) < 1(q)"q"?

b (mod q)
d
for every h. Therefore @%{ds part (i).

For part (ii) we may assume

g <N <q

else if N < ¢; we have the trivial bound < N < (¢; N)Y?, and if N > ¢, then (i) implies
the result since ¢*/? = (q1q2)"? < (2 N)"2.

The main idea will be to reduce our incomplete exponential sum mod ¢, to a sum of
incomplete exponential sums mod ¢;. Now

eg(f(n + kqr)) = eq (f(n)/q2) eq,(f(n + ka1)/a1)

so that, by a simple change of variable, we have

2 ealf(n Zeq n+ka)) =D eq (f(n)/a) eq(F(n + kar)/ar).

n

Now, if we sum this over all k,1 < k < K := |N/q1|, then we have

K> ey(f( Zem n)/q) Z fn+ka)/q),

k=1

22

= Z (k1 (

kK <K

and so

‘KZeq(f

fn+kq)/q)

||MN

fn+kq)/q)

HMN

where gip(n) == (f(n +kq) — f(n + K q1))/qu (mod @) if n + kg1, n+ kK'q1 € I, and
grgr(n) := 0 otherwise. If k& = k' then gy r(n) = 0, and so these terms contribute
< KN?

We now prove that (ga, grw) = (g2, k — k’): Suppose that p divides (g2, gk ), so that
ptq. Now f(n+kq) = f(n+Eq) (mod p) for all n, and so if p t (k — k') then
p|f(a) — f(0) for all a. Now if f(a) = ¢ (mod p) for every a (mod p), and p > deg f
then f(x) = ¢ (mod p), contradicting the hypothesis. On the other hand if p|(k — k')
then p|gk,k"



42 ANDREW GRANVILLE

Now part (i) yields a bound (taking ¢ there to be ¢2/(g2, k — k")) for the above which is

N k—k'l 1/2 /21
« KN? + N1(g)" Z ( (4, ) B 08

K
« K*N (q —|—q2 ( Z 1/2+10gq2>>,

as N < ¢o (so that N /ql/ 2 q2/ ) and since each j appears as a difference |k — k| at
most 2K times. The result of part (ii) follows since

K

2 K
(%Z(jm)m) <%Z (j,42) < Z 2 d< Zd _\T@
: =t

j=1 J 1d|ge, d|j d\QQ

For part (iii) we observe that if ¢ is y-smooth then it has divisors in any interval of
multiplicative length y. In particular we can select ¢; in the interval ¢'/3y %3 < ¢ <
(qy)'/? so that ¢*3y~/3 < g, < (qy)??, and hence part (ii) implies our result. O

8.1. Some specific incomplete sums. In our particular application, we n %d only the
following special case of the above proposition, which is a strengthening of % F emma

11]:

Corollary 8.2. Let dy,ds be square-free integers, with (¢1,dy) = (ca,ds) = 1, and let
h:=[dy,ds]/(dy,ds). For any a (mod q), we have

Z €d ( a )ed (—C2 ) < (_[dhd?] )1/2+0(1)+—N
"\n+h A\ n+ly (q,[dr,ds]) [q,h]'

n=a (mod q)

If dy and dy are also y-smooth then

5 ed( ¢ )ed( Cy ) «y%( [dy, ds] )1/6+0<” (g)”Z N
) ! n + ll 2 n + 12 (Q7 [db dQ]) q [q7 h]

n=a (mod ¢

Proof. Writing n = a + mq and q = rqqp, the sum is now over an interval of values of m
of length M = N/q + O(1). The first exponential in the summand becomes

. ( 1 ):e ( c1 )e ( aQ/q )
D\ n+1, " \(a+l)di/q W\ m o+ (a+1)Q

where ¢ = (¢,d;) and ¢ = ¢171, with Qg = 1 (mod d;/¢q1). Note that the first term
here is fixed as m varies. An analogous identity is true for the second term. Hence we

can write
1/491 ! 2/492 !
~ m+ 1} m + 1

2 e C1 e Co _
YSA\nrl ) 2\ ntl,

n=a (mod q)

with (¢}, d;/q;) = (¢;,d;/q;) = 1 for each i.
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Now on each subinterval of length [dy/q1, d2/q2] (= [d1, d2]/(q, [d1,ds])) we have a com-
lete exponential sum which is of size < (di/q1, d2/q2) (= (d1,d2)/(q, d1, d2)) by Lemma
" Therefore this yields an upper bound, in total, of

N/q _ N
T dal (g, [, day 2 2/ oo o) = E

where h := [dy, d3]/(dy, d3).

The remaining part of the sum is an incomplete sum modulo [dy,d2]/(q, [d1,d2]) of
length no longer than the modulus. The first result now follows immediately from
Proposition%(i). The second result follows Proposition%(iii). O

Corollary 8.3. Suppose that grq; and grqgs are squarefree integers, and that q|g. For
any a (mod q) we have

Yooe (%) e (%) eq (%) €qs (nc—il> < (rq1ga(g/q)) W + (Cr—mg

n=a (mod q)
Moreover, if r, g, q, g2 are all y-smooth then we also have the upper bound

o N\ ¢, ) N
<t/ (5] DT

Proof. We can combine any two such exponentials e, (%) €s (%) = €, (%) with (r,s) =1

by taking ¢ = s(a/s), + r(a/r)s (with (b), the least residue of b (mod ¢)), and so
(¢,rs) = (a,r)(b,s). To apply the previous corollary we need to replace every eq(c/n)
n

by €afea)(¢/(c, d)n), and therefore the summand becomes, say, €q, (<) eq, (-2;), where

_ r _ . . [d1,d2] did
h = Gld e 24 d2 = oy, We use the inequality r0n < iids <
rq1G2(g/q). We also note that h (= ([Zi’jz])) is divisible by ﬁ and that (¢,r) =1 (as
glg and (g,r) = 1), so that [¢,h] = 4% = 455 D

8.2. More complicated exponential sums. In this section we will prove a couple
of rather complicated exponential sum estimates that will be needed in the final proof.
We begin by defining the following exponential. Suppose that k, h,r, g, 1,5, a, by, bs
are given integers, such that rgf,/y is squarefree and coprime with ab;by. Then define
Op(h,n;r, g, 01, ls) = ®(n) by

ah bih bih boh
B(n) = e, ) |
(n) :=e (ngﬁlﬁg) “ (m’él&) ct (nrg&) ct ((n + /{:r)rgﬁl) (8.6)

when n + kr = ben/by; (mod g), and Py (h, n;r, ¢, ;) := 0 otherwise. Notice that ®(n)
can be rewritten (inconveniently) as an exponential of the form e,(t) for some integer
t, where q = rgl,ls.

We are interested in bounding the following exponential sum:

Sk (R, 3, 9, b1, bayma, ma) = Z Di(h,nir, g, 41, L) (4, s 7, g, M, ma). (8.7)
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Note that if (by — b1, g) t k then there are no solutions n to n + kr = byn/b; (mod g),
and so Sk,T'(h7j7 g, 51, EQ, myq, mg) = 0.

h
We begin with an estimate on this exponential sum Tﬁ%ﬁﬁ)], followed by one that
appears in H)?U :
Proposition 8.4. Assume that that rglils and rgmims are both squarefree and coprime
with abybe, and that (by — by, g)|k. Let qo := g/(ba —b1,9). If r = R and 1,0y, mq,msy =
Q/g then
_ o A r)N

|Sk,r(h7j7g7€17 627 my, m2)| « (R(g/QO))1/2 (Q/g)2$ W T %%7
where A := hmyimg — jlils. If my = f1 and grlilams is y-smooth, then we can take
A = hmgy — jly and get the bound

(8.8)

N\ V2
|Sk,7'(h7 j7 gla €27 617 m2)| < (R(g/QO))l/G y1/6 (Q/g)1/2 (_) xo(l) + —( —

Proof. 1f (by — by, g)|kr and n + kr = ben/by (mod g), then n belongs to a single con-
gruence class mod g, call it ¢t (mod qp).

We begin by simplifying the expression for ®y(h, n;r, g, (1, l2) P (5, n; r, g, m1, ms). when
n + kr = byn/b; (mod g): The exponent for e, is
ah aj al\

nglily B ngmims  nglilomims’

One makes a similar calculation for e,.. We create an exponential mod [¢1, m1] from the
exponentials mod ¢; and mod mq, and therefore we have exponent

bih [517m1] bij ) [élaml] _ blA/(élaml)

nrgls A nrgme my nrglams

We perform the analogous calculation mod [la, ms].

Hence we have shown that Sy, is the sum, over n in our interval for which n+kr = byn/b;
(mod g), of

¢ al\ e blA . blA/(ﬁl,ml) e bgA/(gg,mg)
"\ nglilomims ) 7 \ nrlilomims [£2;ma] nrglams [£2m2] (n + kryrgtym; )

The first result then follows from Corollary@'s(%), and the crude hound [¢1, m4][{2, mo] <
lymylamsy. (We can deduce a simj ar result from Corollary %’%1)) The second result
similarly follows from Corollar;‘%%i) since (¢1,7) = 1 and from the crude bound
[1, 01][l2, ma] < €1lams. (Again, a similar result from Corollary 1).)

O

exse-2
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— 9. THE GRAND FINALE
Cypei-ii-sec
. . ucedRange
Our goal is to establish Theorem % i

ReducedRange
Theorem @‘F’Wﬁgmm 1,0, A > 0. Suppose that we have two sequences of complex
numbers a,,, M <m < 2M, and 8,, N <n < 2N, where 8, satisfies the Siegel-Walfisz
condition, and that o = 3 satisfies the necessary sieving condition, where z'/* « N <
M « 2?3, with x = MN. Suppose also that N/(yz°) < R < N/z¢ and 2'/?/(log v)? <
QR < 22 where y := 2°. For any A > 0, for any integers a,b, b’ with p(abb’) >y,

we have
L1/2
2 )3 2 @Bm= 3 (@B <alallflg
¢€[Q,2Q)] r€[R2R], |n=a (mod r) n=a (mod r) &
Do<p(q)<P(q)<y P(r)<y n=b (mod q) n=b' (mod q)

qr squarefree

(9.1)

where Dy = x/1°818%  In, fact it suffices to take 162n + 905 < 1.

We chose 7 to be slightly less than N to ensure that the constraint n =a (mod r) still
incorporates some non-trivial averaging in the o weight, which allows one to profitably
use the dispersion method of Linnik. We chose ¢ to be free of small prime factors, so
that two such ¢’s are likely to be coprime.

Throughout the argument below, the restrictions on m, n, ¢, r from the hypothesis will
be taken as given.

-2
In the left-hand side of awwe replace the absolute value in the (q,r) term by a

complex number ¢, of absolute value 1, and then each (a = 8)(¢) = >, _,a(m)B(n)
to obtain, after a little re-arranging:

Z Z a(m) Z Z Cq,rﬁ(n)(lmnzb (mod ¢) — Ln=v (mod q))

¢ n: mn=a (mod r)

By the Cauchy-Schwarz inequality the square of this is
<Y 2 lam)P < Rlaf

times

ZZ Z Z Cq,rﬁ(n)(lmnzb (mod ¢q) — 1mn£b’ (mod q)) . (92)

¢ n: mn=a (mod r)
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When we expand the sum, we obtain the sum of four terms of the form

+ Z Z Z Z quﬂ”@ﬂ(nl)/ﬁ(nﬂlmmzh (mod q1)1mn2£b2 (mod g2)

room qi,q2 ni,n2
mni=mns=a (mod )

o DI =T oo I SR

T q1,92 ni,n2 m m=ba/ny (mod g2)
ni=nz (mod r) m=a/n1 (mod r)

7

where we get “+” when by = by = b or ¥/, and “—" otherwise, since (mn,qr) = 1.
Notice that the last sum is 0 unless by /n; = by/ny (mod (g1, ¢2)); and that this criterion
is irrelevant if (¢q, o) = 1.

9.1. The main terms. When the last sum (over m) is non-zero then we “expect” it
to be M/r|q1,g2]. In our range this can be < 1, which makes no sense for an individual
sum, but we expect this to be about right “on average”. The key idea is to deal with the
deviation from this average using exponential sums. This is the “dispersion method”.
First though, let us deal with the “expected” main term:

o M
iZ Z Z CarrConrB(n1) B(n2) - ool
T q1,92 ni,n2 ’
o no=ni (mod )

n2=(b2/b1)n1  (mod (q1,92))

We pull out the term with (g1, ¢2) = 1 to obtain

M
+ Cqr.rCaqr (1) B(n2) -
Zrl qlz,qlz n;m n Q1
(¢1,92)=1n1=n2 (mod r)

which is independent of the values of by, b and hence cancels, when we sum over the
four terms.

Otherwise g := (q1,q2) = Dy. If g < N/R then there are approximately N/gR values
of ny for each ny. Hence by Cauchy-Schwarz

D 18(n1)B(ny)] < Q%IIBQ

ni,n2
ne=ni (mod )
n2=(b2/b1)n1 (mod g)

Therefore the total contribution above is

18] 1 18]
<« > ||5H2 i xR Y5« Z—DO

2
r Do<g<N/R 41,42 D0<g<N/Rg
gla, g\qz

For larger g, the sum above becomes

«3 3 S BB Mg

r N/R<g<Q _nine
no=ni (mod r)

ne=(b2/b1)n1 (mod g)

Since there is at most one value of ny for each n; we can use Cauchy-Schwarz to show
that the sum over ni,ny is < ||8]|>. So the total contribution is ||S||*M log x, which is
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far smaller then the previous contribution, as M < x'~¢/R, by hypothesis. Hence the
contribution of the expected main terms is in total

1/2

1/2 /
2. 28 .
(F1a- 500) " < el o

9.2. Crude error terms for large g. If ¢ > G := Q*R/M then M/r[q1,q2] = 1, and
the count of the number of m values is as above with an error term of O(1). We will
simply sum up these crude error terms. (In fact one can take this error term for any g).
Now if we Cauchy the sum over  we get in total « (R% + 1)||8]?. The sums over the

¢;’s divisible by g, contribute @/g each, and the sum over r, contributes R, so over all
g = G the error term is

Q2 N 2 2 N R 2

& GZ R?(R_g + 1)|8]F « @ (@ + 5)“5“ '
<g<Q

Taking G = Q*R/M this is

z zBl?  z(logx)*|5|*
« (ﬁ + 1) N < N
where D = QRIF| Hence the contribution here is

« o] |8l (log 2) 7 (R/N)/2

which is certainly acceptable given our choice of R.

9.3. Exponential sums. After removing these contributions, we are left with four
terms, each of which is bounded by a sum of the form

YN Y s S -

r=R g<G 01,02=Q)/g ni,no=N m=M
(01,62)=1 ni=ny (mod r) m=mo(ni,n2) (mod rglils)
bi/ni=ba/na  (mod g)

writing 1 = gl1, q2 = gls, where mg = mg(ny, no) is that residue class §00%E46%£27’

which is = by /ny (mod gf1), = be/ne (mod gly), = a/ny (mod r). Using is 18
1
SPIDIEDINEDINE P 2 Bm)Bm)ergn (mo(m, ma)h)).
r=R g<G 01 lo=Q/g 0<i<J " 1<|h|<H; ni,no=N
(€1,62)=1 Hi:=2'G/g ni=nz (mod r)

na=(b2/b1)n1 (mod g)

Writing ny = n and ny = n + kr for some k, |k| < N/R, this equals

SDINDIEDIDINE

g<G 0<i<J r=R f1,€2xQ/g
H;:=2'G/g (€1,62)=1

15We can divide G by (N/R)Y?/(logx)®, and still have a good error term.
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% 2 2 Bn)B(n + kr)®i(h,n;r, g, 01, 62) . (9.3)

Y 1<|h|<H; | k<N/R n=N
(ba—b1,g)|k (ba—b1)n=bikr (mod g)

i-def
bearing in mind the definition @m that there is only a term if (by — by, g)|k .
We will see two techniques for dealing with these sums, both of which begin by using
the Cauchy-Schwarz inequality to eliminate the §(n) factors, so reducing things to
incompl te ex ggential sum estimates, which we handle by using the estimates from
Section ‘%

9.4. Technique # 1. We replace the absolute value above by a complex number ¢y, ¢, ¢,
of absolute value 1, so that the sum

Z L Z ZB(n)ﬁ(n—l—kr)q)k(h,n;r,g,éhég)

£1,62=Q/g ZA1<|h\<H,‘ n

(01,62)=1
equals
—_— 1
Z B(n)B(n + kr) Z — Z Choy 0, Pi(h,myr, g, b, L) (9.4)
n=N 01,60=Q/g ~ " 1<|h|<H;
(b2—b1)n=bikr (mod g) (01,62)=1

Applying the Cauchy-Schwarz inequality, the square of this is less than or equal toE]
2. 1BmBM+ k< ) 180" = 155

(applying the Cauchy-Schwarz inequality again), times

Z Z = Z Chyty 0, Pr(hy 57, g, 01, L)

H;
no10,02=Q/g I<|h|<H;
(£1,62)=1

1 .
< ﬁ Z Z |Sk,r(h73797£17£27m17m2)|7
vag|hllil<Hy f1,82,m1,me=Q/g
(01,02)=(m1,m2)=1

by expanding and then taking absolute values for each fixed e J, 01,09, m1, M3, Where

L a
the exponential sum Sy . (h, j, {1, {2, m1,ms) is defined in . By Proposition Eih;, =
this is %M times

< (R(bs ~ by, ) Q)+ 2= 00 9)

% Z Z (hmlmg—jflég, T).

1<|hl|jI<H; £1,02,m1,m2=Q/g
£1,€2)=(m1,m2)=1

Now, in the sums in the second term let u = hmymsg, v = jl1ls so that 1 < |ul, |v] «
H;(Q/g)? and the pair is represented at most 73(u)73(v) = 2°) times. Therefore the

161f we apply Holder’s inequality with exponents 6,6, 6,2, we can replace 3[4 in this upper bound
by (N/g')}/3|B|&; and more generally (N/g')'=2/™||3|3,,, where ¢’ = g/(by — b1, g).
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difference w = u — v satisifies |w| « H;(Q/g)? is represented at most x°MH;(Q/g)?

times. Now
Y Y Y ds Zd(—+1)<(2W+r)7(r).

|w|<W |w|<W d|(w,r) d|r

Hence the above is 2°() times

< (B(bs ~by.))"* Q)" + o 209

(Q/9)*((Q/9)* + R/Hy).

Collecting this information together, and summing over r and k, yields an upper bound
on 1@35 of

R1/4Q3 N1/2Q2 1 MN 1/2 1
PN Y T (5 b

g<G 0<i<J

, N1/2Q2 MN 1/2
< |82 NzW (R1/4Q3 + %t ( Rl/)2 )

Finally we assume that ||8[2N"? « ||8]22°M) (note that |3]% < ||3|2N*/? by Cauchying),
and therefore the total contribution is

R)* N(QR)?
& ||O./|| ”6“2 o( <N1/2 (Q ) + (Q ) -{—RI/QNI/QII/Q)

R/ R3/2

iz o) (T s @
a2l (St 4 St wah k) ©5)
using the inequalities N/2°*¢ < R < N/z¢, a'/* o) < /241 Now since

[FinalBou alSéction

N « z'2, the last term is « z'~%2. We will bound (95) m sec‘mon |9_|

Lemma Lemma
We remark that had we nsed Proposition E?%(u; in place of Proposition g%ll;, then the
(Eg) would

first term in have been
.TG 377+75—&- E/N1/2 in place Of x%+37’]+£(6+6)/N5/4.

This yields a suitable bound in a wider range for N, but not for all N » z'/3 so, either
way, we need another argument for smaller N.

9.5. Technique # 2. We.also employ a variation on this theme, including {1 in the
outside summation in when we apply Cauchy-Schwarz. Hence the square of our

quantity is

||/3H4 DD D Skehidig o, 1, ms)|.

H; 1<Ihl JI<Hi 6=Q/g L2 mQAQ/g
lomo Kl)

L
By Proposition Eiit 1), and the assumption that IBI2NY? « || B2

1/6 Qo (ba — b1,g)2/3 Q* (by — by, 9)

<« [ =™ | (Ry)

L 1<k, |j|<H; £2,ma=Q)/g

1
s b gl | RGP —big)? | RV g(bz—bhgwﬁ)

FinalBound

1 .
N1/2 g5 + f g FZQ Z Z (hm2 — jba, 7’)



50 ANDREW GRANVILLE

Proceeding as above, and since 7(u)7(v)7(r) = 2°!), we obtain

by —b1,9)"*  Q*(ba—bi,9) (Q* M
4, .0(1) 1/6Q (ba 1,9 2 1,9
e (R e N

as H; = 2'RQ?*/gM.

Collgcting this information together, and summing over r and k, yields an upper bound
on 1635 of

9/4 Q? (MQ)'? 1
2N o(1) R 1/12 Q -
< Hﬁ” X %Z:GO;J y N1/4 + R1/2 + 27‘/2R1/2 g3/2(b2 . b17 g)1/2

2@ @ <M@>”) |

R (R

Therefore the total contribution is

1/12 9/4 3/4 2
o y"2(QR)7*N N(QR)
« 2822 (

+ Nl/Q(MNQR)W) :

R7/6 R3/2
249n+35+2e 1+2n+3(5+e)
xrs'a 4 6 x 2 3,1
« a2 ( IR v Toa— N/> -
using the inequalities N /2% < R < N /¢, 2'/27°0) < QR < 2'/2+7,
< |a|?(8]2zW (3372 ARG 4 g a2t Nl/Zx%%”) . (9.6) [FinalBoung

as N » z'/3. The third term is « 21=%2 provided N < 22 7€,

Lemma Lemma
We remark that had we used Proposition giih% i place of Proposition igii 11;7 then the

n 36 *36 . 9 ,9/,7 ,56 Le 5/12
xr 8 4 2 /N 1n p ace Ol xTr8 4 4 6 /N / .

This yields a suitable bound only for N somewhat bigger than %%, not for all N » /3,
whereas the argument we have used allows N to be this small.

FinalSection

[FinalBoungtinalBound?2
9.6. Bounds in different ran§es In (9.5 and (9.6]), we want the quantity in brackets

to be « x'7¢. We use erange r2 T < N « x2 so that it is

& xs 4"74’*64’ 5 + ZL’Z 57’]‘5’*64’5 + xl*E/Z.

alBound2 9
We use e range 235 « N < g2 12 , so that it is

71 5
L 17 4n+ 5+65+xs+277+ (6+€) —i—xl e/2

1=¢2 for a sufficiently small choice of € > 0, as long as

162 + 905 < 1.

These are all « x

CorrectNorms

9.7. Correcting the norms. We made some unnecessary assumption of the norms
in the arguments above. In fact we used 4-norms and 8-norms. Simply using the

inequalities, fOIE %u}%] ported in [M,2M], that |v], < ||7H4M1/4 < |y|sM?®, we can

correct Theorem y replacing ||| 8]z'? by |alls|B]sz™®
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olymath8 . .
9.8. Better results. In FFBU the authors obtain better results using somewhat deeper
techniques.

One key observation is that y-smoothness was used in the above argument to construct
a divisor r of a given integer d in a prespecified interval of multiplicative length y. In
fact one can make do just with this property and, to improve our exponential sum
estimates, that r also has a divisor in a prespecified interval of multiplicative length y.
By going to such a larger class of moduli ¢ they improve the restriction to

84n + 48 < 1.

Following Zhang they also gained bounds on certain higher order convolutions (of the
shape a1 = 1 1), though here needing some deeper exponential sum estimates, and
were then able to improve the restriction to (slightly better than)

43n + 275 < 1.
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10. WEAKER HYPOTHESES

—secC
I% segtion 'E we stated that we only need the estimate @ for the exponential sums in

. It 1s worth noting may be weakened to the upper bound « p?, for any given

0 € (3,2), and we can still obtain the same result:

tion B 1 Ly 0 _
From Proposition ﬁ onwards we replace the exponent 5 by ¢, and g b.ya?t(E Oﬁ)ﬂalEven

tually this leads us in technique # 1, to replacing the first term in and the line
above, by
1/2 (QR)2+20 1‘1+9+(2+29)77+(%0+1)(6+6)
N R%@Jrl < N%

Do 1,
which is, for N > 2777,

& T (30+1)5+(30+5)e

.. . . . inalBound2 .
Similarly, in technique # 2, we replace the first term in @Wﬁe line above, by

36 36 1 36 0
o (QR)* s PTG+t a0+ (s )e
N3/4y 1w+ <
y 1+ 0 ~ lJr 0
R T2+9) N 47 20+9)

. . _ 1 .
which is < z'~¢, for N > z3, provided

92—
(116 + 8)n + (70 + 4)6 < T%

so we deduce such a theorem provided 6 < %
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