Bounded gaps between primes

Yitang Zhang

Abstract

It is proved that
liminf(ppy1 — pn) < 7 x 107,

n—oo
where p,, is the n-th prime.

Our method is a refinement of the recent work of Goldston, Pintz and Yildirim on the small
gaps between consecutive primes. A major ingredient of the proof is a stronger version of the
Bombieri-Vinogradov theorem that is applicable when the moduli are free from large prime
divisors only (see Theorem 2 below), but it is adequate for our purpose.
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1. Introduction

Let p,, denote the n-th prime. It is conjectured that

liminf(p,41 — pn) = 2.
n—oo

While a proof of this conjecture seems to be out of reach by present methods, recently

Goldston, Pintz and Yildirim [6] have made significant progress toward the weaker con-

jecture

lim inf(p,41 — pn) < 0. (1.1)

In particular, they prove that if the primes have level of distribution ¥ = 1/2 + w for an
(arbitrarily small) @ > 0, then (1.1) will be valid (see [6, Theorem 1]). Since the result
¥ = 1/2 is known (the Bombieri-Vinogradov theorem), the gap between their result and
(1.1) would appear to be, as said in [6], within a hair’s breadth. Until very recently, the
best result on the small gaps between consecutive primes was due to Goldston, Pintz and
Yildirim [7] that gives

lim inf ——Lrtt =P (1.2)

n—co \/log p,(loglog p,)®
One may ask whether the methods in [6], combined with the ideas in Bombieri, Fried-
lander and Iwaniec [1]-[3] which are employed to derive some stronger versions of the
Bombieri- Vinogradov theorem, would be good enough for proving (1.1) (see Question 1
on [6,p.822)).
In this paper we give an affirmative answer to the above question. We adopt the
following notation of [6]. Let

H: {hl, hg,...,hko} (13)

be a set composed of distinct non-negative integers. We say that H is admissible if
vp(H) < p for every prime p, where v,(H) denotes the number of distinct residue classes
modulo p occupied by the h;.

Theorem 1. Suppose that H is admissible with ko > 3.5 x 105. Then there are
infinitely many positive integers n such that the kq-tuple

{n+hy, n+hy....n+ hy,} (1.4)
contains at least two primes. Consequently, we have
lim inf(ppy1 — pn) < 7 x 107, (1.5)

The bound (1.5) results from the fact that the set H is admissible if it is composed of
ko distinct primes, each of which is greater than kg, and the inequality

7(7 x 107) — 7(3.5 x 10°) > 3.5 x 10°.
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This result is, of course, not optimal. The condition kg > 3.5 x 10° is also crude and
there are certain ways to relax it. To replace the right side of (1.5) by a value as small as
possible is an open problem that will not be discussed in this paper.

2. Notation and sketch of the proof

Notation

p —a prime number.

a, b, c, h, k, l, m —integers.

d, n, q, v —positive integers.

A(q) —the von Mangoldt function.

7;(¢) —the divisor function, m(q) = 7(q).

©(q) —the Euler function.
1(q) —the Mobius function.

x —a large number.

L =logux.

y, 2z —real variables.

e(y) = exp{2miy}.

eq(y) = e(y/q).

lly|| —the distance from y to the nearest integer.

m = a(q) —means m = a(mod q).

¢/d —means a/d(mod 1) where ac = 1(mod d).

q ~ @ —means @ < q < 2Q.

¢ —any sufficiently small, positive constant, not necessarily the same in each occur-
rence.

B —some positive constant, not necessarily the same in each occurrence.

A —any sufficiently large, positive constant, not necessarily the same in each occur-
rence.

n=1+ L7324

»n —the characteristic function of [N, nN) N Z.

Z*l( Y —a summation over reduced residue classes [(mod ¢q).
mod g
Cy(a) —the Ramanujan sum Z ' eq(la).

We adopt the following conventions throughout our presentation. The set H given by
(1.3) is assumed to be admissible and fixed. We write v, for v,(H); similar abbreviations
will be used in the sequel. Every quantity depending on H alone is regarded as a constant.
For example, the absolutely convergent product

o-T1(-4)(-1)

mod q)



is a constant. A statement is valid for any sufficiently small € and for any sufficiently large
A whenever they are involved. The meanings of “sufficiently small” and “sufficiently large”
may vary from one line to the next. Constants implied in O or <, unless specified, will
depend on ‘H, ¢ and A at most.

We first recall the underlying idea in the proof of [6, Theorem 1] which consists in
evaluating and comparing the sums

=> A(n)’ (2.1)

and

= (i O(n + h,-)) A2, (2.2)

n~x i=1

where A(n) is a real function depending on H and x, and

logn if n is prime,
0(n) = :
0 otherwise.
The key point is to prove, with an appropriate choice of A, that
Sy — (log 3x)S; > 0. (2.3)

This implies, for sufficiently large z, that there is a n ~ z such that the tuple (1.4)
contains at least two primes.
In [6] the function A(n) mainly takes the form

D ko+lo
A(n) = ot lo ' Z (log ) , lo >0, (2.4)

d|P(n
d<D
where D is a power of z and
ko
P(n) = [J(n+ hy)
j=1
Let
A(v;d,c) = Z Z v(n) for (d,c) =
and

Ci(d)={c: 1<c<d, (¢,d) =1, P(c—h;) =0(mod d)} for 1<i< k.



The evaluations of S; and S, lead to a relation of the form
SQ — (log 3.13)51 = (I{IO’]—; — E’Tl*)x + O($£k0+210) + 0(8)

for D < x1/27¢ where 7;* and 7T, are certain arithmetic sums (see Lemma 1 below), and

= > ) ud)lrs(d)mig-a(d) DY 1A d, o).

1<i<ko d<D? ceC;i(d)

Let @ > 0 be a small constant. If
D = g'/**= (2.5)

and kg is sufficiently large in terms of w, then, with an appropriate choice of [y, one can
prove that
kO,]-Q* . £7-1* > £k0+2l0+1' (26)

In this situation the error £ can be efficiently bounded if the primes have level of distri-
bution ¥ > 1/2 4 2w, but one is unable to prove it by present methods. On the other
hand, for D = 2'/47¢, the Bombieri-Vinogradov theorem is good enough for bounding &,
but the relation (2.6) can not be valid, even if a more general form of A\(n) is considered
(see Soundararajan [12]).

Our first observation is that, in the sums 7;* and 7", the contributions from the terms
with d having a large prime divisor are relatively small. Thus, if we impose the constraint
d|P in (2.4), where P is the product of the primes less than a small power of z, the
resulting main term is still > LM with D given by (2.5).

Our second observation, which is the most novel part of the proof, is that with D
given by (2.5) and with the constraint d|P imposed in (2.4), the resulting error

Y. > mdma(d) Y [AWG:d.) (2.7)

1<i<ko d<D? ceCi(d)
d|P

can be efficiently bounded. This is originally due to the simple fact that if d|P and d is
not too small, say d > 2'/27¢, then d can be factored as

d=rq (2.8)

with the range for r flexibly chosen (see Lemma 4 below). Thus, roughly speaking, the
characteristic function of the set {d : 2'/27¢ < d < D?, d|P} may be treated as a well
factorable function (see Iwaniec [10]). The factorization (2.8) is crucial for bounding the
error terms.

It suffices to prove Theorem 1 with

ko = 3.5 x 10°



which is henceforth assumed. Let D be as in (2.5) with

Let g(y) be given by

and
gy)=0 if y>D,
where
lo = 180.
Write
Dy=2%,  P=]]» (2.9)
p<D1
Dy = exp{L!/*o}, Po = H . (2.10)
p<Do

In the case d|P and d is not too small, the factor ¢ in (2.8) may be chosen such that
(¢, Po) = 1. This will considerably simplify the argument.

We choose
An)= > u(d)g(d). (2.11)

In the proof of Theorem 1, the main terms are not difficult to handle, since we deal
with a fixed H. This is quite different from [6] and [7], in which various sets H are involved
in the argument to derive results like (1.2).

By Cauchy’s inequality, the error (2.7) is efficiently bounded via the following

Theorem 2. For 1 <1 < kg we have

YD jAGd o < aL (2.12)
d<D? ceCi(d)
P
The proof of Theorem 2 is described as follows. First, applying combinatorial argu-
ments (see Lemma 6 below), we reduce the proof to estimating the sum of |A(y;d, ¢)|
with certain Dirichlet convolutions . There are three types of the convolutions involved
in the argument. Write
zy = 22887 1y = '/, (2.13)

In the first two types the function v is of the form v = a * 3 such that the following hold.
(A1) «a= (a(m)) is supported on [M, ' M), 51 <19, «a(m) < 75, (m)L.
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(As) 3= (B(n)) is supported on [N, n”2N), 7jo <19, [(n) < 75,(n)L,
11 < N < 222, For any ¢, r and a satisfying (a,r) = 1, the following " Siegel-Walfisz”
assumption is satisfied.

> Wb)—% > Bn) < (g NLT04,

n=a(r) (n,gr)=1
(n,q)=1

(Az)  J1+J2 <20, [MN,n*MN) C [x,2z).

We say that v is of Type I if 27 < N < x5; we say that ~ is of Type ITif 2, < N < 2z'/2.

In the Type I and II estimates we combine the dispersion method in [1] with the
factorization (2.8) (here r is close to N in the logarithmic scale). Due to the fact that
the modulo d is at most slightly greater than z'/? in the logarithmic scale, after reducing
the problem to estimating certain incomplete Kloosterman sums, we need only to save a
small power of x from the trivial estimates; a variant of Weil’s bound for Kloosterman
sums (see Lemma 11 below) will fulfill it. Here the condition N > z;, which may be
slightly relaxed, is essential.

We say that v is of Type III if it is of the form v = «a * s¢p, * sy, * 2y, such that «
satisfies (A7) with j; < 17, and such that the following hold.

(Ag) N3 < Ny <Ny, MN; < .

(As) [MN{NyN3,n*° MNNyN3) C [x,2z).

The Type III estimate essentially relies on the Birch-Bombieri result in the appendix
to [5] (see Lemma 12 below), which is employed by Friedlander and Iwaniec [5] and by
Heath-Brown [9] to study the distribution of 73(n) in arithmetic progressions. This result
in turn relies on Deligne’s proof of the Riemann Hypothesis for varieties over finite fields
(the Weil Conjecture) [4]. We estimate each A(y;d, c) directly. However, if one applies
the method in [5] alone, efficient estimates will be valid only for M N, < x3/8-5%/2—¢,
Our argument is carried out by combining the method in [5] with the factorization (2.8)
( here 7 is relatively small); the latter will allow us to save a factor r'/2.

In our presentation, all the a(m) and ((n) are real numbers.

3. Lemmas

In this section we introduce a number of prerequisite results, some of which are quoted
from the literature directly. Results given here may not be in the strongest forms, but
they are adequate for the proofs of Theorem 1 and Theorem 2.

Lemma 1. Let 01(d) and 0o(d) be the multiplicative functions supported on square-free
integers such that

01(]7) = Up, 02(p) = vp — 1.



Let

d d d did
-Yyy pldrdo)endoida) 413 (dods)
- dodyds

di  da
i d d d dqd )
Z Z Z Iu - 2dg(21 dO — (dodl)g<dod2).
do dr ds oW1 2
We have ) ”
0 = o (4 ) S008I ol 1)
and , ” ,
* +
']‘2 — (ko - 210 " 1)' < lOO+ ' )6(10g D)k0+210+1 + 0(£k0+2l0+1). (32>

Proof. The sum 7;* is the same as the sum 7z(l1, lo; H1, He) in [6, (7.6)] with
H1:H2:H (klzkgzko), llzlgzlo, R:D,

50 (3.1) follows from [6, Lemma 3]; the sum 7;* is the same as the sum Tx(1y, lo; H1, Ha, ho)
n [6, (9.12)] with

H1:H2:H, 11212:l0, hoGH, R:D,

0 (3.2) also follows from [6, Lemma 3|. O

Remark. A generalization of this lemma can be found in [12].

ZM 91 r)

(r,d)=

Z M 92 dr)

Suppose that d < D and |u(d)| = 1. Then we have

Lemma 2. Let

and

lo
Ay(d) = 0}5!@ & ( log g) +O(Lh1+e) (3.3)
and 9 il
As(d) = (ZO2T(1))!6 (log E) +O(LhFe), (3.4)

where ¥1(d) and Y9(d) are the multiplicative functions supported on square-free integers

such that »
wo=(1-%) o= (1-%5)
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Proof. Recall that Dy is given by (2.10). Since o1(r) < 73,(r), we have trivially

Ai(d) < 1+ (log(D/d)) ™™,

so we may assume D/d > exp{(log Dy)*} without loss of generality. Write s = o +it. For
o > 0 we have

Z p(r)ei(r) 1+S _191(d,S>G1(5)C(1_|_8>—k0

wor Tl e Te- )0

It follows that

where

L[ 0(ds)Gi(s) (Djd) ds
271 (1/L) C(l + S)ko 8k0+l0+1 .
Note that G1(s) is analytic and bounded for o > —1/3. We split the line of integration

into two parts according to |t| < Dy and |t| > Dy. By a well-known result on the zero-free
region for ((s), we can move the line segment {c = 1/L, |t| < Doy} to

Ai(d) =

{o = —r(log Do)~", |t| < Do},
where k > 0 is a certain constant, and apply some standard estimates to deduce that

Ay(d) = L/ V1(d, s)G4(s) (D/d)* ds L oAy,
|s

271 |=1/L C(l + S)ko gko+lo+1

Note that ¥;(d,0) = 9,(d) and
91(d, ) — D1(d) = 91(d, s)0:(d Z“ Jorll) (g _ sy,
I|d
If |s| < 1/L, then 9,(d, s) < (log £)?, so that, by trivial estimation,
V1(d, s) — V1 (d) < L5
On the other hand, by Cauchy’s integral formula, for |s| < 1/L£ we have
Gi(s) -6 < 1/L.
It follows that

1 ﬁl(d, S)Gl(s) (D/d)S ds 1 / (D/d)s ds -
) - —19 d)6 - K £0 +€'
2mi Jygj=1ye C(14+ s)ko  ghotlotl 2mi (d) ol=1/z glo+1
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This leads to (3.3).
The proof of (3.4) is analogous. We have only to note that

Ay(d) = - / Va(d, 5)Gs(s) (D/d)* ds
(

B 2_7TZ 1/L) C(l —+ S)kO*l gho+lo+1
with
v, — 1 -1 v 1 1 1—ko
Wa(d, s) = 1—p—) . Gals) = (1_ p )(1_ > 7
2( ) ]P;d[ ( (p - ]_)ps 2< ) rp[ (p — 1)p5 p1+s
and G5(0) = &. O
Lemma 3. We have
d)%(d 1 4+ 4gg) ko
Z Ql( )d 1( ) _ ( +kﬂ“‘7> 6_1(logD)k° +O(£k0—1) (35)
d<xl/4 0-
" (d)do(d)  ( )ik
0 1+ 4w)i—r . .
2 (dj = o O (o D)+ 0L, (3.6)
d<zl/4 ¥ 0 :

Proof. Noting that J1(p)/p =1/(p — v,), for 0 > 0 we have

> 2@ _ g ()1 + sy,
d=1

where

5 =T (1 525 ) (-5

p
Hence, by Perron’s formula,

Z Ql(d)ﬁl(d) B L/1/£+1D0 B1(8)€(1+S)koxs/4
d 1

ds + O(Dy*LP).

oy 21 J1/—ip, s

Note that Bj(s) is analytic and bounded for ¢ > —1/3. Moving the path of integration
to [—1/3 —iDy, —1/3 +iDy], we see that the right side above is equal to

1 ko 8/4
L\/ Bl(8><( +S) T dS—i—O(Do_lﬁB)
|s|=1/L

2me s
Since, by Cauchy’s integral formula, B;(s) — B1(0) < 1/L for |s| = 1/L, and

D)0 e

p
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it follows that

Z Ql(d)jl(d) _ I%O!G_l (%) ’ +o(Lk.

d<zl/4

This leads to (3.5) since £/4 = (1 + 4w) 'log D by (2.5).
The proof of (3.6) is analogous. We have only to note that, for o > 0,

Z QQ(d)192(d) _ BQ(S)C(l +S)ko—1

with

and BQ(O) = 6_1. ([l
Recall that D; and P are given by (2.9), and Py is given by (2.10).
Lemma 4. Suppose that d > D3, d|P and (d,Py) < Dy. For any R* satisfying

D? < R* < d, (3.7)

there is a factorization d = rq such that D7'R* <r < R* and (q,Po) = 1.
Proof. Since d is square-free and d/(d, Py) > Dy, we may write d/(d, Py) as
d ﬁ ith Do<pr <p2<..<p,<D >2
= S Wi n y =24
(d, 7)0) j:1p] 0 P1 P2 p 1

By (3.7), there is a n’ < n such that

n’ n'+1
(d.Po) [[ps <R and  (d,Po) [[ p; = R".
j=1 j=1

The assertion follows by choosing
T:(d7PO)Hpj7 q = H pj7
Jj=1 j=n/+1

and noting that r > (1/py1)R*. O
Lemma 5. Suppose that 1 < i < ko and |u(qr)| = 1. There is a bijection

Ci(qr) — Ci(r) x Ci(q), ¢ (a,b)

11



such that ¢(mod qr) is a common solution to ¢ = a(mod r) and ¢ = b(mod q).
Proof. By the Chinese remainder theorem. O

The next lemma is a special case of the combinatorial identity due to Heath-Brown|[8].

Lemma 6 Suppose that /10 < z* < na'/1°. For n < 2z we have

A(n):Z(_DJl(le) S pm)epnim) S logm,

j=1 mi,...,m; <x* ni..n;mi...m;=n

The next lemma is a truncated Poisson formula.

Lemma 7 Suppose that n < n* < 0 and 2"/* < M < 2*/3. Let f be a function of
C®(—00,00) class such that 0 < f(y) <1,

fly)=1 if M<y<n'M,
fw)=0 i y¢[Q-M*)M, (1+ M )n"M],

and ' .
fOy) < M09 >,

the implied constant depending on € and j at most. Then we have

S sm) =5 32 f(hfdied—an) + 0

m=a(d) |h|<H

for any H > dM %% where f is the Fourier transform of f, i.e.,
fe)= [ ety dy.

Lemma 8. Suppose that 1 < N < N' <2z, N' — N > 2°d and (c¢,d) = 1. Then for
7, v > 1 we have

N'—N .
Ti(n)’ K £t
NN

N<n<N'
n=c(d)

the implied constant depending on €, j and v at most.
Proof. See [11, Theorem 1]. O
The next lemma is (essentially) contained in the proof of [5, Theorem 4].
Lemma 9 Suppose that H/N > 2, d > H and (¢,d) = 1. Then we have
> min{H, [|en/d||'} < (dN)*(H + N). (3.8)

n<N
(n,d)=1
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Proof. We may assume N > H without loss of generality. Write {y} = y — [y] and
assume ¢ € [1/H, 1/2]. Note that {cn/d} < £ if and only if bn = ¢(mod d) for some
be (0,d¢], and 1 — & < {cn/d} if and only if bn = —c¢(mod d) for some b € (0, d¢], Thus,
the number of the n satisfying n < N, (n,d) =1 and ||cn/d|| < £ is bounded by

> 1l <N
gq<dN¢
g==c(d)

Hence, for any interval I of the form
I=(0,1/H], I=[1-1/H1), I=[¢] or I=[1-¢1-¢
with 1/H < & < & < 1/2, & < 2¢, the contribution from the terms on the left side of

(3.8) with {cn/d} € I is < d°N'*. This completes the proof. O

Lemma 10. Suppose that = (5(n)) satisfies (A2) and R < x=°N. Then for any q
we have

<< 7_ )BN2£7100A.

> el) 3

r~R I( mod r)

> B(n) }: B(n

n=Il(r) nqr) 1
(n,q)=1

Proof. Since the inner sum is < o(r)"'N2LP by Lemma 8, the assertion follows by
Cauchy’s inequality and [1, Theorem 0]. O

Lemma 11 Suppose that N > 1, dydy > 10 and |u(dy)| = |p(de)| = 1. Then we have,
for any c1, co and I,

cin cy(n+1) 24e (c1,d1)(ca, do)(dy, dy)* N
P (m'+_75_) () udy I

(n7d1 ):1
(n+l,d2):1

P?"OOf. Write d[) = (dl,dg), tl = dl/do, t2 = dg/dg and d = dotltg. Let

K(d1,61;d2,02;l,m): Z (01H+M+@>'

o dq do d
(n,d1)=1
(n+l,do)=1
We claim that
|K(d1, Cq; dg, Co; l, m)| S d0|S(m, bl, tl)S(m, bg, t2)| (310)
for some b, and b, satisfying
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where S(m, b;t) denotes the ordinary Kloosterman sum.
Note that dy, t; and ty are pairwise coprime. Assume that

n = tltgno + d0t2n1 + d0t1n2 (mod d)

and
[ = tltglo + dotllg (HlOd d2)

The conditions (n,d;) =1 and (n +[,ds) = 1 are equivalent to
(ng,do) = (n1,t1) =1 and (ng + lo,do) = (ng + la,t5) =1
respectively. Letting a;(mod dp), b;(mod t;), i = 1,2 be given by
artity = ci(mod dy), astit; = co(mod dy),

bldth = cl(mod t1>, bgd%tl = CQ(mOd tQ),
so that (3.11) holds, by the relation

1t dy
—= =4 — d1
5= d Ty (medd)
we have
cin Cz(n + l) ajng + ag(no + lo) blﬁl bQ(”Q + lg)
—_— = d1).
oG do L R (mod 1)
Hence,

an  cn+l)  mn

A d
Ealﬁo + ag(n;+ lo) +mng + biny ;r mmny n ba(ng + o) : m(ny + by) _ W;ZQ(mod 1).
0 1 2 2

From this we deduce, by the Chinese remainder theorem, that

K(dy,c1;dy, co;1,m) = ey, (—mly)S(m, by;t1)S(m, by; ta) Z €dy (aﬁl +as(n+1ly) + mn),

n<dy
(n,do):]-
(n+lo,do)=1

whence (3.10) follows.
By (3.10) with m = 0 and (3.11), for any k£ > 0 we have

3 e(j—ﬁ + %f”) ‘ < (e, dv)(ca, do)do.

k<n<k+d
(n,d1=1
(n+l7d2):1

14



It now suffices to prove (3.9) on assuming N < d — 1. By standard Fourier techniques,
the left side of (3.9) may be rewritten as

Z u(m)K (dy, c1;dz, co;1,m)

—oco<m<oo

u(m) < min{ﬁ, 1 i}. (3.12)

d’ |m|” m?

with

By (3.10) and Weil’s bound for Kloosterman sums, we find that the left side of (3.9) is
< d0(|u<0>’(b1,t1)<b2,t2 tl 1/2+€Z |U m,bl,t1)1/2<m,b2,tg)l/2).
m##0

This leads to (3.9) by (3.12) and (3.11). O

Remark. In the case dy = 1, (3.9) becomes

c ,di)N
5 eq, (c1n) < di/*T % (3.13)
n<N 1
(n7d1):1

This estimate is well-known (see [2, Lemma 6], for example), and it will find application
somewhere.

Lemma 12. Let

,_Z—'(k’7 mi, Mo q Z Z Z ltl — l + k’)tg + m1t1 — mgtg)

(mod g)t1(mod q)ta2( mod q)
where Z, is restriction to (I(l 4+ k),q) = 1. Suppose that q is square-free. Then we have
T(k;mi,ma; q) < (k,q)'2q% .
Proof. By [5,(1.26)], it suffices to show that
T(k;my, ma; p) < (k,p)/?p%2.
In the case k # 0(modp), this follows from the Birch-Bombieri result in the appendix

to [5] (the proof is straightforward if m;ms = 0(mod p)); in the case k = 0(mod p), this
follows from Weil’s bound for Kloosterman sums. O
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4. Upper bound for 5;

Recall that S; is given by (2.1) and A(n) is given by (2.11). The aim of this section is
to establish an upper bound for S; (see (4.20) below).
Changing the order of summation we obtain

5D SN S

di|P da|P P(n)= ([d1 da])

By the Chinese remainder theorem, for any square-free d, there are exactly g;(d) distinct
residue classes (mod d) such that P(n) = 0(modd) if and only if n lies in one of these
classes, so the innermost sum above is equal to

%H O(o1([dy, da))).
It follows that
Sl _ ’Tll’ + O(D2+€), (41)
where
= 3 5 MG ()
d1|P da|P 2

Note that ¢;(d) is supported on square-free integers. Substituting dy = (di,ds2) and
rewriting d; and dy for dy/dy and dy/dy respectively, we deduce that

1=y 30 3 AR gy, (12)

dodyd
do|P du|P do|P 0FLE2

We need to estimate the difference 7; — 7;*. We have
1" = %1 + X,

where

p(dids) o1 (dodydy)
= > > > dodids 9(dod1)g(dod>),

d0<.'171/4 dy da

p(dyds) o1 (dodrd
= > Y. Z - ZO dll 5 2) g (dod g o).

2l/4<dog<D d1

In the case dy > x'/*, dody < D, dody < D and |u(d1ds)| = 1, the conditions d;|P, i = 1,2
are redundant. Hence,
71 = Yo + X,

16



where

N d1d2 91 d0d1d2)
= > > > dodidy 9(dod)g(dody),

do<zl/4 di|P d2|P
do|P

p(didy) o1 (dodyd
Sp= ) D ilodlld; 1) 9(dody)g(dody).

zi<dog<D di d2
do"P

It follows that
|7 — 77| < |21 + | Ba] + 23], (4.3)

p(dydy) o1 (dodyd
dig = Z Z Z . zdodlldgo 12) 9(dody)g(dody).

z/i<dy<D d1  d2
dotP

where

First we estimate »;. By Mobius inversion, the inner sum over d; and ds in Y is
equal to

Z Z pu(di)or dcllldz(dz)m(dz)g(dodl)g(dodg)( > u(Q))

0

(dl do) 1 (dg do Q|(d17d2)
(do)
91 0) Z (g Ql Al(d q)
(g,do)=1

It follows that

21 - Z Z Ql do doq ( ) .A1(doq)2. (44)

d0§11/4 (q dO

The contribution from the terms with ¢ > Dy above is < Dy'£B. Thus, substituting
doq = d, we deduce that

d)¥*(d
S aOD 4 v o5 ), (4.5
d<$1/4D0
where
Z M )oi(q
dogq=d
d0<$1/4
q<Do
By the simple bounds
A (d) < Clo(log L)% (4.6)

which follows from (3.3),
V*(d) < (log £)?

17



and

yoo2s 16(;” < Lhotifkomt, (4.7)

z1/4<d<xl/4 Dy

the contribution from the terms on the right side of (4.5) with /4 < d < 2'/%Dj is
o(LkoF2l0)  On the other hand, assuming ],u(d)| =1 and noting that

Z“ Jald) _ gy, (4.8)
qld

for d < z'/* we have

ﬁ*(d) = ﬂl(d)_l + O(Tk0+1(d)D0_1),
so that, by (3.3),

9*(d)A.(d)? = @ ') — &%, (d) <10g %)210 + O(Thyz1(d) Dy ' LP) + O(L 07 1),
Inserting this into (4.5) we obtain
Y a(d)hn(d) (log %) Y o(Lkol0). (4.9)
d<z1/4
Together with (3.5), this yields
1] < %G(I% D)kot2lo 4 o(Lhot2loy) (4.10)

where
51 = (1 + 4’@)_k0.

Next we estimate 5. Similar to (4.4), we have

- 01(do)p (CI)2 * 2
EQ = Z Z d()q Al(dOQ) :

d0<$1/4 (q dO
do"P q|7>

Z p(r)oi(r dT)

7’\7j

where

In a way similar to the proof of (4.5), we deduce that

o= Y, MA;(CZ)Z +O(Dy'LP). (4.11)
d<x1/4D0
dP

18



Assume d|P. By Mobius inversion we have

D= Y u(?")m(:)g(d?") S s 01(q
(r,d)=1

ql(r,P*) q|P*

where

I »

D1<p<D
Noting that
V1(q) =1+ 0(D;") if ¢|P* and ¢< D, (4.12)
by (3.3) we deduce that
1
A5 (d)] < =&, (d)( log = Z 019 | o plo-t+s) (4.13)
Io! =
q<D

If g|P* and ¢ < D, then ¢ has at most 292 prime factors. In addition, by the prime
number theorem we have

1
> = =10g293+O(L™4). (4.14)
Dy1<p<D
It follows that

((log 2
Z alg < 1+ Z (log 93 Jko)” +O0(L™) =6, +O(L™), say.

qlP”
q<D

Inserting this into (4.13) we obtain

0 D\
| A1 (d) gl—ﬁeﬁl(d)(bg5> + O(Lh1ey.

Combining this with (4.11), in a way similar to the proof of (4.9) we deduce that

D 2lo
Z ai(d)%(d) <10g3> 4 o(LFo+2o),

21/4

25| <

Together with (3.5), this yields

5,62

Yol < ———=—
] = kol (1))

S(log D)kot2lo 1 o( Loy, (4.15)
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We now turn to 3. In a way similar to the proof of (4.5), we deduce that

= Y %@(CZ)AI(CZ)?, (4.16)

zl/4<d<D

ZMQl

dog=d
1/4<d0
dofP
By (4.6) and (4.7), we find that the contribution from the terms with z'/4 < d < 24D,
in (4.16) is o(Lko+2l0),
Now assume that #'/*Dy < d < D, |u(d)| = 1 and d { P. Noting that the conditions
do|d and z'/* < dy together imply dy { P, by (4.8) we obtain

where

-y M9 )4 o @ D).

dogq=d
1/4<d0

Together with (3.3), this yields

. D\ 20
J(d) A (d)? = (lo 2 &9 (d) <log E) + O (Thy1(d) Dy LB 4 O(L20~ 1)
Combining these results with (4.16) we obtain
1 d)v,(d D\ 2
>3 = (Io))? DY Q1<—)d 1(d) (105-’; E) + o(Lhot2lo), (4.17)
" x'/4Dy<d<D
P

By (4.12), (4.14) and (3.5) we have

y, el oy aldnld 5

ml/il?]gi<D d<D p|(d,P*)
Ql 791 91 191
D1<Zp<D d<ZD/p
< (EE e (o D) + o)
Together with (4.17), this yields
3y < 08290 g pytotat | o photaioy (4.18)

(ko — D)1(Io!)2
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Since

1 ko + 210\ (2l
kol(o)2 ~ (ko +200)! \ ko I )’

it follows from (4.3), (4.10), (4.15) and (4.18) that

K1 2[0 k
T -7 < ——— log D)ko+2lo Lo+ 4.19
7= T < o () Slog D o), (g
where ol
K1 :51(1+5§+(1og293)k0)( OZ °>.
0

Together with (3.1), this implies that

1+k 2l
Combining this with (4.1), we deduce that

1+ K1 (2[0

S < —
P (ko + 200)! \ o

) GSx(log D)rot2o 4 (g Lhot2o), (4.20)
We conclude this section by giving an upper bound for ;. By the inequality
n! > (2mn) e

and simple computation we have

log 293)ko)22\?* 1
1 2 1 2 2 (( 1 1 584
+ 05 + (log293) kg < ( 5001 <2927T( 85100)
and .
ko + 210) 2ky° 1 360
< 26500)°°".
( ko (2lp)! 1807r( )

It follows that
293
log k1 < —3500000 log 502 + 584 10g(185100) + 360 log(26500) < —1200.

This gives
k1 < exp{—1200}. (4.21)
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5. Lower bound for S,

Recall that S is given by (2.2). The aim of this section is to establish a lower bound
for S5 on assuming Theorem 2 (see (5.6) below), which together with (4.20) leads to (2.3).

We have
=) D b )> + O(x%). (5.1)

1<i<kg n~zx

Assume that 1 < i < ky. Changing the order of summation we obtain
Z@(n))\(n — hi)? = Z Zﬂ(dl)g(dl)ﬂ(d2)g(d2> Z 0(n).
e di[P dz|P P(n—h:)=0([d1,da))
Now assume |u(d)| = 1. To handle the innermost sum we first note that the condition
P(n—h;)=0 (modd) and (n,d)=

is equivalent to n = ¢(mod d) for some ¢ € C;(d). Further, for any p, the quantity |C;(p)|
is equal to the number of distinct residue classes (mod p) occupied by the h; — h; with
h; # hi(mod p), so |C;(p)| = v, — 1. This implies |C;(d)| = 02(d) by Lemma 5. Thus the

innermost sum above is equal to

> > b)) = 311’322 o)+ D A6:[didy), c).

CECi([dl,dg}) nEcT(Z[:iJidg]) n~zx CECi([dl,dg])

Since the number of the pairs {di, ds} such that [dy, ds] = d is equal to 73(d), it follows

that
D 0mAn—h) =T Y 0(n)+O(E), (5:2)
where
1=y Y MBI, g, g,

2])

di|P d2|P

which is independent of ¢, and

&= m(dos(d) Y |A®;dc).

d<D? ceCi(d)
d|P

By Cauchy’s inequality and Theorem 2 we have

52' < I‘L_A. (53)
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It follows from (5.1)-(5.3) and the prime number theorem that
SQ = kngx + O(I'E_A) (54)

Similar to (4.2), we may rewrite 7 as

(dqds)02(dodyd
T, = ZZZM 12@2 012) (dod1)g(dod2)-

d d d
do|P du|P do|P od1dz)

In a way much similar to the proof of (4.19), from the second assertions of Lemma 2 and
Lemma 3 we deduce that

. K 20y + 2
RO R ] (zoo+ 1 )60% DYoL, (59)
where T
o = 61(1 + 4o (1 + &2 + (log293)k0)( OZ °1+ )
-

Together with (3.2), this implies that

1—/12 (2l0+2
(ko + 20+ 1)\ o+ 1

Combining this with (5.4), we deduce that

]{?0(1 — Hg) (2[0 + 2
(k0+2l0+1)! lp+1

T, > )6(log D)ko+2lo+1 + O(£k0+2l0+1)‘

Sy > ) G (log D)kot2lotd 4 o(g Lhot2lotdy, (5.6)

We are now in a position to prove Theorem 1 on assuming Theorem 2. By (4.20),
(5.6) and the relation

£:

log D
1+ 4w 08

we have
Sy — (log 3z)S; > wSx(log D)MoT20tt 4 o(gLrot2lothy, (5.7)

ko(1 — ko) (210 + 2) B 4(1 4+ k1) (210)’

where

T (ko +2l+ D)\ lo+1 ) (1+4w)(ko + 200)! \ I
which may be rewritten as

1 <2l0> (2(2l0 +1) ko(1— ko) 41+ m)).

(ko + 200)! \ I lo+1 ko+2lb+1 1+4w

w =

Note that
Ky ko(ko + 21y + 1)(1 + 4w)

Kk (2lo+1)(2l +2)

< 108,

23



Thus, by (4.21), both of the constants k; and ky are extremely small. It follows by simple

computation that
w > 0. (5.8)

Finally, from (5.7) and (5.8) we deduce (2.3), whence Theorem 1 follows.

Remark. The bounds (4.19) and (5.5) are crude and there may be some ways to
improve them considerably. It is even possible to evaluate 77 and 75 directly. Thus one
might be able to show that (2.3) holds with a considerably smaller k.

6. Combinatorial arguments

The rest of this paper is devoted to proving Theorem 2. In this and the next six
sections we assume that 1 <1 < ky. Write

D2 = ZEI/Q_E.

On the left side of (2.12), the contribution from the terms with d < D, is < £~ by the
Bombieri-Vinogradov Theorem. Recalling that D; and Py are given by (2.9) and (2.10)
respectively, by trivial estimation, for Dy < d < D? we may also impose the constraint
(d,Py) < Dy, and replace 6(n) by A(n). Thus Theorem 2 follows from the following

> Y Ad o <L (6.1)

Do <d<D? ceC; (d)
d|P
(d,P0)<D1

The aim of this section is to reduce the proof of (6.1) to showing that

S lAtdo) < aL™ (6.2)

Do<d<D? c€C;(d)
d|P
(d,P0)<D1

for v being of Type I, II or III.
Let L be given by L(n) = logn. By Lemma 6, for n ~ x we have A(n) = A;(n) where

Ay :Z(_l)j_l(ljo> Z (poens;) * oo x (poear,) * (sen;) * .oo% (Loeny).

j=1
Here M;, ..., My, Nj, ..., N1y > 1 run over the powers of 7 satisfying
M, < &', (6.3)

[M;...MyNj...Ny,n* M;...MyN;...Ny) N [z, 2x) # ¢. (6.4)
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Let As have the same expression as A; but with the constraint (6.4) replaced by
[M;...MyN;...Ny,n** M;...M;N;...Ny) C [z, 2). (6.5)

Since A; — Ay is supported on [~ %z, n*z] U [2n~ 2%z, 2n*°z] and (A; — Ag)(n) < T20(n)L,
by Lemma 8 we have

S Y AWM - Agdie)| < aL

Do<d<D? c€C;(d)
d|P
(d,P0)<D1

Further, let

A3 = Z(—l)j—l <30> (log Ny) Z (poenr, ) * ..k (oear, ) * (2w, ) %% (5o, ) (6.6)

Jj=1 Mj,...,M1,Nj,...,N1

with M;, ..., My, Ny, ..., Ny satisfying (6.3) and (6.5). Since (A — Az)(n) < mo0(n)L724,
by Lemma 8 we have

Z Z IA(Ay — Az;d, c)| < 2L,

Do<d<D? c€C;(d)
d|P
(d,Po)<D1

Now assume that 1 < 5/ < 7 < 10. Let v be of the form

v = (log Njr)(psen,) * ... % (poear,) * (22n,) * ... x (52w,

with M;, ..., My, N;, ..., Ny satisfying (6.3) and (6.5), and N; < ... < N;. We claim that

either the estimate
xl—w-ﬁ-a

A(y;d,c) < g (6.7)
trivially holds for d < D? and (c,d) = 1, or v is of Type I, IT or III.
Write M; = z#t and N, = z**. We have
log 2

1
0<u<—, 0<y;<..<uy, 1<+ +m+vi+..+rn<l+

- 10’ L

In the case 3/8 + 8w < 1y < 1/2, 7 is of Type I or II by choosing 3 = sy, ; in the case
1/2 < vy <1/2+ 3w, 7 is of Type II by choosing a = »¢p,; in the case 1/2 + 3w < 1y,
the estimate (6.7) trivially holds.

Since v; > 2/5 if j = 1,2, it remains to deal with the case

3
]23, l/1§§+8w.
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Write
Vi=pi+ . v+t
(the partial sum v; + ... + vy is void if j = 3). In the case v* + 14 < 3/8 + 8w, v is
obviously of Type III. Further, if v* has a partial sum, say v/, satisfying
3 5
§+8w<ul+ul < §—8w,

then « is of Type I or II. For example, if
1

3
§+8w<,uj—|—...+u1—|—y1§—,

we choose 3 = (usenr,) * ... * (psear, ) * (22w, ); if

DO

1 )
§<,uj+...—|—,u1—|—ul<§—8w,

we choose av = (pseny,) * ... (psear,) * (s2n,).
It now suffices to assume that

5
vt > g~ 8w, (6.8)
and every partial sum v/ of v* satisfies either
3 5
V’+y1§§+8w or l/—l—ylzg—Sw.

Let v be the smallest partial sum of v* such that 1] + v, > 5/8 — 8w (the existence of v]
follows from (6.8), and there may be more than one choice of v]), and let  be a positive
term in v{. Since v/j — I is also a partial sum of v*, we must have

vy — U+ <3/8+ 8w,
so that

This implies that 7 must be one of the v, ¢t > 4 (that arises only if 7 > 4). In particular
we have v4 > 1/4 — 16tw. Now, the conditions

1 log 2
1—16WSV4§V3§V2§V1, v +uvs v+ <1+ 18
together imply that
1 3 < a4 s < 1 L log 2
——Rw <3+ <= .
2 =T e T or

It follows that « is of Type I or II by choosing 5 = sy, * sn,.

It should be remarked, by the Siegel-Walfisz theorem, that for all the choices of
above the Siegel-Walfisz assumption in (Ay) holds. Noting that the sum in (6.6) contains
O(L£%4) terms, by the above discussion we conclude that (6.2) implies (6.1).
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7. The dispersion method

In this and the next three sections we treat the Type I and II estimates simultaneously
via the methods in [1, Section 3-7]. We henceforth assume that v = a * [ satisfies (Aq),
(Ag) and (A3). Recall that 27 and x5 are given by (2.13). We shall apply Lemma 4 with

R*=2"°N (7.1)
if v is of Type I (1 < N < x3), and
R*=a2°%N (7.2)

if v is of Type II (x5 < N < 2z'/2).
Note that D? < R* < D,. By Lemma 4 and Lemma 5, the proof of (6.2) is reduced
to showing that

Z |Z Z Z‘A%raq, ‘<<x£41A

R*/D1<T<R* a€Ci(r) Dso/r<q<D?/r beC;i(q)
q|P
(a,7Po)=1

where, for |u(qr)| = (a,7) = (b,q) =1,

Alyirya;q,0) = Y ~(n) - ! v(n).

It therefore suffices to prove that

BB =Ykl Y Y Y [Abrasa b <ot (1)

r~R a€eCi(r) qTQ beCi(q)
alP
(a,7Po)=1

subject to the conditions
r"“R"<R<R" (7.4)

and I
5331/275 < QR < x1/2+2w’ (75>

which are henceforth assumed.
For notational simplicity, in some expressions the subscript ¢ will be omitted even
though they depend on it. In what follows we assume that

r~R, |ur)=1 aecCr). (7.6)
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Let ¢(r,a;q,b) be given by
c(r,a;q,b) = sgn A(y;r,a54,b)
if
qn~ Qa q|7)7 (q7T7D0) = 17 b € CZ(Q)J

and
c(r,a;q,b) =0 otherwise.

Changing the order of summation we obtain

Z Z ‘A vir,a;q,b ‘ Z a(m)D(r,a;m),

QTQ beCi( (m,r)=1
q|P
(‘LTPO):I

where

Dram)= 3 etraiad (X so-— 1ﬁ(n))-

(@:m)=1 mn=a(r) olar) o
mn=b(q)
It follows by Cauchy’s inequality that
Bl QR < MRLPS )] Y3 fm)Deaim)?,
r~R a€Cyi(r) (m,r)=1

where f(y) is as in Lemma 7 with n* = '9. We have

> f(m)D(r,a;m)* = Si(r, a) — 28,(r, a) + Ss(r, a),

where S;(r,a), j = 1,2,3 are defined by

- Y s ¥ Tt ¥ 6(n))2,
(m,r)=1

(gm)=1 b mn=a(r)
mn=b(q)

T’CL 1761 r,a 2,b2

(LI IO quq>
xz Z n)Ba) > fm),

(r)

(n2,q2r)=1 mni=a
mni1=b1(q1)
(man) 1

28
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(r,a; ql,bl c(r, a; qa, b)
S0 =X 5 T ¥ Lty

b1 g2 b2 (qZT)
xY Y BBy Y f(m).
(n1,q17)=1 (n2,q2r)=1 (m,q1q27r)=1

By (7.7) and (7.8), the proof of (7.3) is reduced to showing that

D) (Si(rya) = 28y(r,a) + Ss(r,a)) < aNR L7 (7.9)

s a

on assuming A > B. Here we have omitted the constraints given in (7.6) for notational
simplicity, so they have to be remembered in the sequel.

8. Evaluation of S3(7,a)

In this section we evaluate S3(r, a). We shall make frequent use of the trivial bound
flz) < M. (8.1)

By Mobius inversion and Lemma 7, for ¢; ~ @), 7 = 1,2 we have

S fm) = 299 o) 4 o), (8.2)

(m,q1q2m)=1 91927

This yields

(r,a; qhbl c(r, a; g2, b2) p(q142)
et

L ©(q2)p(r) G1Gar

Xy > B(m)B(n2) + O(x"N*R ™).

(n1,q17)=1 (n2,g27)=1

In view of (2.10), if (q1¢2, Po) = 1, then either (¢1,¢2) = 1 or (q1,g2) > Dy. Thus, on the
right side above, the contribution from the terms with (¢, ¢2) > 1 is, by (8.1) and trivial
estimation,

< xNDy'R2LP.

It follows that )
Ss(r,a) = f(0)X(r,a) + O(xNDy*R™2LP), (8.3)

where

c(r, a; qi,b1)c(r, a; gz, ba
=YY ¥ peetatmes 35

1427
@ b (g2,q1)=1 b2 Ny (n1,q1m)=1 (n2,q27)=1
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9. Evaluation of Sy(r,a)

The aim of this section is to show that
Sy(r,a) = f(0)X(r,a) + O(xND;'R72LP). (9.1)
Assume ¢(r, a; 1, b1)c(r, a; g2, b2) # 0. Let v(mod ¢;7) be a common solution to
v = a(mod r), v = by(mod ¢q).

Substituting mn; = n and applying Lemma 8 we obtain

D oBm) Y fm)< Y mo(n) < Ly

r
mni= a ) n<2x ql
mni1= bl(ql) n= V(qlr)

(m7lJ2)=1

It follows that the contribution from the terms with (q1,g2) > 1 in Sy(r, a) is
< aNDy'R™2LP,
so that,

TCL ZZ Z Z Taqhbl (TCLC]2,[92)

r
g1 b1 (g2,q1)=1 b2 QQ)

XYY Bm)Bn2) > f(m)+O@@NDy'R2LE). (9.2)

ni1  (n2,qer)=1 mni=a(r)
mni1=b1(q1)
(m,g2)=1
Note that the innermost sum in (9.2) is void unless (ny,¢;7) = 1. For |u(q1ger)| = 1 and
(g2, Po) = 1 we have

q2 o . —1
(p(qQ) =1 +O( (Q2)DO )7

and, by Lemma 8,

S B Y fm S mn) < ZRIET

rD

(n1,q17m)=1 mni=a(r) n<2x ¢« 0
mni1=b1(q1) n=v(qir)
(m,q2)>1 (n,q2)>1

Thus the relation (9.2) remains valid if the constraint (m,g2) = 1 in the innermost sum
is removed and the denominator ¢(ger) is replaced by gap(r). Namely we have

c(r, a; qu,b1) (TGC]Q7b2)
WP IR IES e

g1 b1 (g2,q1)=1 b2 qQSO

x> Y Bm)Bna) Y f(m)+O@@NDy'RLP).

n1  (n2,q2r)=1 mni=a(r)
mn1=b1(q1)

(9.3)
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By Lemma 7, for (ny,¢1r) = 1 we have

where

Hy = 4QRM 12,

and p(modg;r) is a common solution to
pny = a(mod r), pny = by(mod q). (9.4)

Inserting this into (9.3) we deduce that
Sy(r,a) = f(0)X (r,a) + Ro(r,a) + O(xNDy *R2LP), (9.5)

where

(r, ) ZIZ Z Z c(rya; qr,b1)c raqg,b2)<( Z ﬂ(m))

b1 (g2,q1)=1 b2 01g2r(r) ng,qar)=1
D SRR O D { ) EET!
(n1,q1m)=1 1<|h|<H2

The proof of (9.1) is now reduced to estimating R (7, a). First we note that the second
inequality in (7.5) implies

H2 < $_1/2+2w+2€N < 2x2w+2€’ (96)

since M~! < 7' N (here and in what follows, we use the second inequality in (7.5) only).
This implies that Ry(r,a) = 0 if v is of Type L.
Now assume that v is of of Type II. Noting that

Mo aqT L by (mod 1)
q r il
by (9.4), we have
Ra(r,a) < N'R™ 3" |R*(r,a5m)], (9.7)

n~N
(n,r)=1

where

R*(razn) — ;M T f(ﬁ)e(—afq_n_bhm).



To estimate the sum of |R*(r, a;n)| we observe that

|R*(r, a;n)|? Z Z Z Z (r,a;q,b Ta;q’,b’)
(g;n)=
Z Z f<qr> <h/>6(a(h//_hq)n B bhm_i_b/h/m).

T T !
1\<|hl<Hs 1<|h/|<H> 7 q q

It follows, by changing the order of summation and applying (8.1), that

DS m*mn\z«ZZZy o Delr g, b)

n~N q
(n,r)=1 (98)

Yo Y Wiraiq.bid Uik ),

1§‘h‘<H2 1§|h/|<H2

where

g —hq)n bhrn b h'T™n
W(T’,a;q,b; q,,b/;h, h/) — Z B(CL( Q)n . rm + /7"71)
N r q q
Since M~t < N~!, by the second inequality in (7.4) and (7.2) we have
HyQ ' < 37+, (9.9)

It follows that, on the right side of (9.8), the contribution from the terms with h'q = hq'
is
<NQ? Y Y 7(hg) < 2PN, (9.10)
1<h<Hz ¢<2Q
Now assume that c(r,a;q,b)c(r,a;¢',0') # 0, 1 < |h| < Hs, 1 < |W| < Hy and
h'q # hq'. Letting d = [q, ¢'|r, we have

a(W'qd — hq) bhi#  VhF
- -
for some ¢ with

It follows by the estimate (3.13) that

d)N
W(r, a; q, b, U5 h 1) < dM2H8 %.

(9.11)
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Since N > x5, by the first inequality in (7.4), (7.2) and (2.13) we have
R < 2Nt < g1/ (9.12)
Together with (7.5), this implies that
Q < ', (9.13)
By (9.13) and (7.5) we have
4?2 < (Q*R)\V? < gl/4+6%,
On the other hand, noting that

Wq —hq=(Nq—hg)ag (modr),

we have
(c,d) < (e;)]a,q'] < g, ¢THQ. (9.14)
Together with (9.6), (9.12) and (9.13), this yields
d)N
(Cv d) < HQNQR_l < x16w+6'

Combining these estimates with (9.11) we deduce that
W(r, a; q, b,/ 05 h 1) < a7

Together with (9.6), this implies that, on the right side of (9.8), the contribution from
the terms with h'q # hq' is < x'/4*12% which is sharper than the right side of (9.10).
Combining these estimates with (9.8) we conclude that

Z |R*(r,a;n)|* < z' 3= M.
n~N
(n,r)=1

This yields, by Cauchy’s inequality,
Z |R*(r,a;n)| < x5/,
n~N
(n,r)=1
Inserting this into (9.7) we obtain

Ro(r,a) < v " NR™? (9.15)

which is sharper than the O term in (9.5).
The relation (9.1) follows from (9.5) and (9.15) immediately.
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10. A truncation of the sum of Si(r, a)

We are unable to evaluate each S;(r, a) directly. However, we shall establish a relation
of the form

ZZSI(T a) ZZ (r,a) + Ri(r,a)) + O(xNR™'L78™) (10.1)

with Ry(r,a) to be specified below in (10.10). In view of (8.3) and (9.1), the proof of
(7.9) will be reduced to estimating R4 (7, a).
By definition we have

a) :Z Z Z Zc(r,a;ql,bl)c(r,a; q2,b2)

g b1 g2 b

XZ Z B(n1)B(n2) Z f(m). (10.2)

ni  na=ni(r) mni=a(r)
mni Ebl (q1 )
mTLQEbQ (qg)

Let U(r,a;qo) denote the sum of the terms in (10.2) with (¢1,¢2) = qo. Clearly we
have U(r, a; qo) = 0 unless

Q0 <2Q, P, (q0,7Po) =1

which are henceforth assumed. We first claim that

2.0 D Ulraig) < aN(DoR)™'LP. (10.3)

r a qo>1

Assume that, for j = 1,2,

¢ ~Q, 4¢P, (g,7Po) =1, b; €Ciq))

and (q1,q2) = qo- Write ¢} = ¢1/q0, ¢4 = q2/q0- By Lemma 5, there exist t1,ty € Ci(qo),
b € Ci(qy) and b, € C;(q}) such that

bj = tj(mod qo), b; = bj(mod q)).
Note that the conditions mn; = t;(mod qo) and mny = t5(mod q) together imply that
t2n1 = t1n2(mod q0> (104)

Thus the innermost sum in (10.2) is void if (10.4) fails to hold for any t,ts € C;i(gy). On
the other hand, if (10.4) holds for some t1,t3 € C;(qo), the innermost sum in (10.2) may

be rewritten as
> fm)

mni=ai qor)
mn1=b)(q})
manbé(qé)
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where a;(mod gor) is a common solution to a; = a(mod r) and a; = t;(mod ¢qp). Hence,
changing the order of summation we obtain

ZZ Tflch,bl TGQ2,b22 Z Z f(m)

by bo n1 ng=ni(r) mnlza(r)
mn1=b1(q1)
mn2=bz(q2)
< YD > > BawBm) Y fm)T (mna,a))T (mns, g3),
t1€Ci(qo) t2€Ci(q0) ™M1 na=ni(r) mni1=a1(qor)

t1na=tani(qo)

where

b.€Ci(q")
b =n(q’)
This yields, by summing over ¢; and ¢ with (¢1,¢2) = ¢o and changing the order of
summation,
U(r,a;q0) < Z Z Z Z |B(n1)B(n2)|
t1€C; (q()) toeC; (qo) ni ng=ni T)
tina=tan1(qo) (10.5)
XY fm)X (mng) X (mny),
mni=a1(qor)
where

xm)= 3 |uld)Fin,q).

7 ~Q/q

We may assume that (nq,qer) = 1, since the innermost sum in (10.5) is void otherwise.
Let as(mod gor) be a common solution to as = a(modr) and ay = to(mod gp). In the
case

ny = ni(modr), tiny = teng(mod qp),

the condition mn; = a;(mod gor) is equivalent to mny = ag(mod gor). Thus the inner-
most sum in (10.5) is

< 3 X+ YD fm)X(mn)?.

mni=ai(qor) mna=az(qor)

Since
1 it ¢|P(n—hy), (¢,n)=
0 otherwise,

it follows that

xm < S )l (10.6)



Assume that 7 =1,2, 1 < u < kg and p # 7. Write
1 * h/t —h
nju (TL]', hM — h2)7 s (nj, hM — hl)

Noting that the conditions p|(mn;+h, —h;) and p { n; together imply that p[(mn;,+h3,),
by (10.6) we have

X (mn;) < H T(mng, + hj,) < Z 7(mn;, + h;uyﬂo*l'
1<pu<ko 1<pu<ko
G HFEL

Since (1, 1j,) = (nju, qor) = 1, it follows by Lemma 8 that

MLB
E f(m)X (mn;)?* < o + 2°/3
0
mn;=a;(qor)

(here the term z°/3 is necessary when gor > x~/4M). Combining these estimates with

(10.5) we deduce that

B

Uraa) < (24 08) S el 30 S 180,
qoT

(n1,q0m)=1 t1€Ci(qo) t2€Ci(qo) m2=ni(r)
tina=tani(qo)

Using Lemma 8 again, we find that the innermost sum is

NLP
< + 2573,

qoT

It follows that
cNLB  pl+e/2

_|_
(qor)? qor

U(r,a; qo) < 02(q0)? (

This leads to (10.3), since NR™! > 2 and

—i—a:aN).

NQR < 2?7 N « """ NR™!

by (7.5), (7.1), (7.2) and the second inequality in (7.4).
We now turn to U(r, a; 1). Assume |p(q1ger)| = 1. In the case (ny, ¢17) = (ng, gor) = 1,
the innermost sum in (10.2) is, by Lemma 7, equal to

Loy (L)ew<—uh> L 0@,

q1927T \h|<Fh q1927T

where

H, = 8Q*RM'** (10.7)
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and p(mod ¢1gor) is @ common solution to

pni = a(mod ),  pny = by(mod 1),  pny = by(mod gs). (10.8)
It follows that R
U(r,a;1) = f0)X™(r,a) + Ry(r,a) + O(1), (10.9)
where
7“ a; C]hbl (7“ a; Q2>bz)
r =YY Yy DO
o b (g2.q1)=1 b2 (n1,q17)=1 na=n1(r)
(n2,q2)=1
and

7b 7b)
ra ZZ Z Z TCLQ1 q11q2:aq2 2

@ b (g2,q1)=1 b2

/ h (10.10)
X Z Z Z f( )eqwzr(_ﬂh)-
41927
(n1,q1m)=1 no=ni(r ) 1<|h|<H
(n2,q2)=
By (10.2), (10.3) and (10.9) we conclude that
2231(7“ a ZZ (r,a) + Ri(r,a)) + O(xN(DoR) ' LP).
In view of (8.1), the proof of (10.1) is now reduced to showing that
Z Z(X*(r, a) — X(r,a)) < N*R71L54, (10.11)

We have

X*(r,a) — X (r, a) ZZ Z Z c(r, a; g1, bi)c TGQ2,52)V(T a1, g)
q1

b1 (g2,q1)=1 b2 192"

with

V(riaq1, q2) Z Z Z Z B(n1)B

(n1,q17)=1 na=ny(r) (nl qr)=1 (n2,q2r)=1
(n2,q2)=1

which is independent of a. It follows that

SS X ra) - X)) < 5 3 L) Q@) S V). (10.12)

0@ e N2 TR
(rq192)=1
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Noting that

Ve =3 (5 s ¥ ) s X am),
Il mod r (nzlgr) SO(T) (n,q1m)=1 (nzlgr) (7”) (n,q2r)=1
n,q1)=1 n,q2)=1

by Cauchy’s inequality, the condition (Ay) and Lemma 10, we find that the innermost
sum in (10.12) is
< 7(quge) EN2L1004,

whence (10.11) follows.
A combination of (8.3), (9.1) and (10.1) leads to

Y (Silra) = 28y(r,a) + Ss(r.a)) = > Y Ra(r,a) + O(xNRTL™5). (10.13)

Note that

a n bigarn bogqirm
H :C]1Q21+1QQ 1+2CI12(

41927 r 41 42
by (10.8). Hence, on substituting ny = n; + kr, we may rewrite Ry (r, a) as

mod 1)

Z Ri(r,a;k), (10.14)
|k|<N/R
where
c(r, a; qu, by)c(r, a; g, bo) 2 h
k) =35 Y YE > A
@ b (qq)=1 b N9 <ih<m,  NDERT
x> Bn)B(n A+ kr)e(—h&(r,a; q1,b; ga, basm, k).
(n,q1m)=1
(n+kr,g2)=1
with

a . bigarn begir(n + kr
q192 1 142 X 241 ( )
r q1 q2

Recall that, in the Type I and II cases, we have reduced the proof of (6.2) to proving
(7.9) at the end of Section 7. Now, by (10.13) and (10.14), the proof of (7.9) is in turn
reduced to showing that

E(rya; k;q1,b1; g, bas ) =

Ri(r,a; k) < x L7584

for |k| < NR™'. In fact, we shall prove the sharper bound

Ri(r,a; k) < 2t ~7/? (10.15)
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in the next two sections.
We conclude this section by showing that the gap between (10.15) and some trivial
bounds is not too large. It trivially follows from (8.1) that

Ri(r,a; k) < 2T H;.
On the other hand, in view of (2.13), since
H, < 2°(QR)*(MN)'NR™,

and, by the first inequality in (7.4), (7.1) and (7.2),

B x@TE if <N <uay
NR ' < - 10.16
{x4w if @y < N < 221/2, ( )

it follows from (7.5) that

(10.17)

o< xpPwT2e if 1 <N <uy
! 8w te if 29 < N <222,

Thus, in order to prove (10.15), we need only to save a small power of z from the trivial
estimate.
The bounds (10.16) and (10.17) will find application in the next two sections.

11. Estimation of Ry(r,a;k): The Type I case

In this and the next sections we assume that |k| < NR™!, and abbreviate

R, C(q17b1>7 C(Q2,b2) and f(Q1,b1;Q2,b2;n)

for
Rl(raa;k>7 C(T7G§Q1,bl)> C(T7G§Q2,b2) and 5(7"761775;611,[71;927(72;”)

respectively, with the aim of proving (10.15). The variables r, a and k may also be
omitted somewhere else for notational simplicity. The proof is somewhat analogous to
the estimation of Ro(r, a) in Section 9; the main tool we need is Lemma 11.

Assume that ;1 < N < x5 and R* is as in (7.1). We have

Ri < Ny~ Z'C(q;—’bl)‘ Y Flabin)l, (11.1)

g b n~N
(n,q1m)=1

39



where

F(q1,bi;n) Z Z Z claz, ba) ( " )3(_hf(Q1,51;Q2>b2;”))-

.
V<IA<H) (qoqi(nikr)=1 b2 22 N2

In what follows assume ¢(qi,b;) # 0. To estimate the sum of |F(qi,b1;n)| we observe
that, similar to (9.8),

-2 Z Fq, bun) < Z Z ZZ| c(qz, ba)c(qy, b5)|

2
n~N (g2,91)=1 (g5,q1)=1 b2 b ¢ q2

(n,q1r)=1 (11.2)
Z Z 1G(h, B q1, b1, G2, b2 g5, b5,
1<|h|<Hy 1<|h/|<H)
where
G(h, b5 q1, b1, Ga, ba; G5, b5) = Z e(hlg(QMbl;CIéa by;n) — h&(qr, bu; Q2752;n))~
n~N
(n,qur)=1

(n+kr,gaqh)=1

The condition N < x5 is essential for bounding the terms with h'gs = hq) in (11.2).
By (7.5) we have
H Q' < 2°(QR)(MN)'N <« z7%¢,
It follows that, on the right side of (11.2), the contribution from the terms with h'qs = hq}
1s
<NQ? Y D 7(hg)? <a N, (11.3)
1<h<Hi q~Q
Now assume that c(qa, b2)c(qy, b5) # 0, (¢2¢5,q1) = 1 and h'qy # hqy. We have

WE(qr, 015 gy, by n) — hE(qu, bas qa, bas )
_ (Wgy — hip)agn N (' — h(jg)blrn Wbhqur(n+kr)  hbyqir(n + kr)
B r q1 a5 q2

(mod 1).

Letting dy = g1 and dy = [ge, ¢], we may write

(W — hs)ad " (W' gy — hao)biT - a (mod 1)
r il dy

for some ¢; with -
(Cl7 T) = (hIQQ - }@27 T))

and I L
hbz/‘hT hboqiT _ [ (mod 1)
42 q2 dy
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for some ¢y, so that

an  c(n+kr)

WE(qr, bi; gy, by m) — h&(qr, bi; gz, baym) = dy d, (mod 1).
Since (dy,dy) = 1, it follows by Lemma 11 that
c1,dy)N
G(h, B3 q1, b, G2, bs g, b5) << (dada)?H + % (11.4)
We appeal to the condition N > z; that gives, by (10.16),
R-L < g@te N1 o p—3/4-15w+e 7 (11.5)

Together with (7.5), this yields
(@) < (R € g gt

A much sharper bound for the second term on the right side of (11.4) can be obtained.
In a way similar to the proof of (9.14), we find that

(c1,dy) < (e, r)qn < H1QP.
It follows by (10.17), (7.5) and the first inequality in (11.5) that

(Ch dl)
dq

Here we have used the condition N > x; again. Combining these estimates with (11.4)
we deduce that

< Hl(QR)RfQ < $1/2+9w+45N72 < x71/476w.

G(h, b5 q1, b1, o, ba; g5, b5) < pTPFEEN.
Together with (10.17), this implies that, on the right side of (11.2), the contribution from
the terms with h'qe # hq) is
< :L,—12w+£H12N < x—?w-‘,—SaN

which has the same order of magnitude as the right side of (11.3) essentially. Combining
these estimates with (11.2) we obtain

Z | F(h; qu, by;n)|? < o' 2= ML

n~N
(n,q1m)=1

This yields, by Cauchy’s inequality,
> | F(hiqrbisn)| < 2t TEE (11.6)

n~N
(n,q1r)=1

The estimate (10.15) follows from (11.1) and (11.6) immediately.
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Estimation of R(r,a;k): The Type II case

Assume that 2o < N < 222 and R* is as in (7.2). We have

Ri <N > |K(n), (12.1)
n~N

(n,r)=1

where

Yoy ypaenrer 5o

(q1,m)=1 b1 (g2,q1(n+kr))=1 b2 0192 <|hl<

e(—h ,b1;g2,b0;m)).
Y e b i)

#
Let Z stand for a summation over the 8-tuples (qi, b1; go, bo; ¢}, by; g5, b)) with

(¢1,92) = (4}, ) = 1.

To estimate the sum of |[KC(n)| we observe that, similar to (9.8),

# |e(qu, bi)e(ga, ba)e(ql, by)c(gy, b))
M2 § K(n)]* < §
N )l N4241¢
(nr)=1 (12.2)

Z Z | M(h, 15 qu, bi; g2, b2; 41, 05 G5, 03

1<|h|<H; 1<|W|<H,

where

/
M, 5 q1,bi; ga, bo; a1, U505, b5) = D e('E(qh, b; @b, Uy ) — BE(qu, ba; 2, bas ).

n~N

/
Here Z is restriction to (n, 1¢\r) = (n + kr,q2q,) = 1.
Similar to (9.9), we have
HlQ_2 < x—Sw-ﬁ-a.

Hence, on the right side of (12.2), the contribution from the terms with A'q1q2 = hqjq) is
<NQ™ 3" 33 r(hag)® < a7, (12.3)
1<h<Hi q~Q ¢'~Q

Note that the bounds (9.12) and (9.13) are valid in the present situation. Since R is
near to z'/2 in the logarithmic scale and @ is small, it can be shown via Lemma 11 that
the terms with h'q1q2 # hqiq¢, on the right side of (12.2) make a small contribution in
comparison with (12.3). Assume that

c(qr, b1)c(qa, ba)el(qy, by)e(qs, 05) # 0, (q1,q2) = (d1,93) = 1, Paqige # hqigs.
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We have o

hg(qhbl;QQu bz?”) - hg(@l,bn(&,bz;n)
n t1n t'n t k t k 12.4
G L o(ntkr) 2(an r) (mod 1) (12.4)
r q1 q1 q2 42

with
s=a(Wq¢ ¢y — hqagz)(mod ), t, = —bihger(mod ), t) = bW ¢hr(mod q}),

ty = —bohur(mod q2),  th = byh'qir(mod ¢j).
Letting di = [q1, q}]r, do = [qo, ¢b], we may rewrite (12.4) as

an  c(n+kr)

RE(qy, b5 6o, by n) — hE(q1, brs go, ba;n) = —
d, do

(mod 1)

for some ¢; and ¢y with L
(c1,7) = (Wa1¢5 — hqna, 7).
It follows by Lemma 11 that

(01, dl)(dla d2)2N

M(h, B qu,b1; g2, ba3 g1, b5 4, by) < (dld2)1/2Jr€ + P
1

(12.5)

By (7.5) and (9.13) we have
(d1d2>1/2 < (Q4R)1/2 < x1/4+16w.

On the other hand, we have (di,ds) < (14}, ¢2¢5) < Q?, since (ga¢h,7) = 1, and, similar
to (9.14),

(Cla dl) S (017 T)[Ql: q;] < [‘hv qg]HlQQ
It follows by (10.16), (9.13) and the first inequality in (9.12) that

(017 d1)(d1, d2)2N
d;

< HINQ’R ' <« ™=,

Combining these estimates with (12.5) we deduce that
M(h, ' q1, b1 qo, ba; qga b/1; q;v b;) < g/ ArIote,

Together with (10.16), this implies that, on the right side of (12.2), the contribution from
the terms with h'q1q2 # hqiq) is

< 1’1/4+16w+€H12 < x1/4+33w
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which is sharper than the right side of (12.3). Combining these estimates with (12.2) we
obtain
> KM < 2 FEEM.

n~N
(n,r)=1

This yields, by Cauchy’s inequality,

> IKm)| <=, (12.6)

n~N
(n,r)=1

The estimate (10.15) follows from (12.1) and (12.6) immediately.

13. The Type III estimate: Initial steps

Assume that v = a * sy, * 20y, * 22y, is of Type III. Our aim is to prove that

pl-e/2
Ay d,c) < y (13.1)
for any d and c satisfying
(de)=1, ' <d<a'»? dP, (d,Py)< Dy,
which are henceforth assumed. This leads to (6.2).
We first derive some lower bounds for the N; from (A4) and (A5). We have
.\ 2
Ny > N, > (M 1) > o164 (13.2)
and .
Ny > = NN > /416 > gl/4-16w (13.3)

Let f be as in Lemma 7 with n* = n and with N; in place of M. Note that the
function sy, — f is supported on [Ny, Ny]U [Ny, nN;'] with Ni* = (1£ N, °)N;. Letting
V= % sy, * 2y, * [, we have

d . 3
— 2 (=) <t
¢(d)
(n,d)=1
and
xl—s/Z
Y=L Yo Y L Y D mel) < —
n=c(d) Ny <g<N; 1<I<3z/q anngnN;L 1<i<3z/q
(q.d)=1  la=c(d) (gd)=1  la=c(d)
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It therefore suffices to prove (13.1) with v replaced by ~*. In fact, we shall prove the

sharper bound
xl—w/S

d

In a way similar to the proof of (8.2) we obtain

> s = 2D f0) + o),

(n,d)=1

A(y*d, ) <

(13.4)

This yields, by (13.2),

1 f 1,.3/4
@ S 0=t T T am o

(n,d):l (m d) 1 n3~Ns3 no~No
(n37d): (n27d):

Here and in what follows, n >~ N stands for N < n < nN. On the other hand, we have

2= 3 >y alm) 3, flm).

n=c(d) (m,d)=1 ’ng"“Ng ngNNg mngngnlzc(d)
(n3,d)=1 (n2,d)=

The innermost sum is, by Lemma 7, equal to
1 .
p Z f(h/d)eq( — chmmzng) + O(z~?),
|h|<H*

where
H* = dN; 2.

It follows that

A(v*:d, c) = Z S>> am) > f(h/d)es( — chmmgmz) + O(d ' 2).

mNM n3~N3 ng~Ng 1<|h|<H*
(m d)= (ng d)=1 (nz,d) 1

The proof of (13.4) is therefore reduced to showing that

X Y f(hdea(ahmzm) < o' (13.5)

1<h<H* mn3~Ns na~Na
(n3,d)=1 (n2,d)=1

for any a with (a,d) = 1.
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On substituting d; = d/(h,d) and applying Mdbius inversion, the left side of (13.5)
may be rewritten as

SN S N fh/diyea, (ahmsms)

d1|d 1<h<H n3~Nj3 nao~No
(h,d1)=1 (ng,d):l (ng,d):l

= 3 > Y ubane) Yo D DS F(hfdi)ea, (ahbsbangns),

dido=d bz|dy ba|dy 1<h<H n3~N3/b3 na~N3/bs
(h,d1)=1 (n3,d1)=1 (n2,d1)=1

where
H =d N, (13.6)

It therefore suffices to show that

D)D) f(h/dyeq, (bhmgmz) < a'FPEM (13.7)

1<h<H ngzNé ngﬁNé
(h,d1)=1 (n3,d1):1 (nz,d1)=1
for any dy, b, Ni, and N} satisfying

d1N3 d1N2

d1|d7 (b7 dl) - 17 S Né S N37 S Né S N27 (138)

which are henceforth assumed. Note that (13.2) implies

H < x3/16+6w+€‘ (139)

In view of (13.6), the left side of (13.7) is void if d; < N}™*, so we may assume
dy > N11_2‘€. By the trivial bound R
F(z) < Ny, (13.10)

and (3.13), we find that the left side of (13.7) is
< HNsN, (dy°7 4 di'Ny) < d3/* PN N3,

In the case d; < x%/1276%  the right side is < 21" M~! by (A4) and (2.13). This leads
to (13.7). Thus we may further assume

dy > 2°/1376% (13.11)

We appeal to the Weyl shift and the factorization (2.8) with d; in place of d. By
Lemma 4, we can choose a factor r of d; such that

oM < < 2P, (13.12)
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Write

Nabh= Y Y > f(h/di)eq, (bh(ng + hkrng),

1<h<H nSNN/ ngNN/
(h,dl):1 (n37d1):1 (ng—f—hkr,dl):l

so that the left side of (13.7) is just M (d;,0). Assume k > 0. We have
N(dv, k) — N(d1,0) = Oi(dy, k) — Qo(ds, k), (13.13)

where
Qidi, k)= Y Y Z f(h/d))eq, (bhing),  i=1,2,
1<h<H n5~N3 17, (
(h dl) (7L3 dl) (l dl) ]_
with

Zi(h) = [nN3, nNj + hkr),  Iy(h) = [N}, Ny + hkr).
To estimate Q;(dy, k) we first note that, by Mébius inversion,

Q;(d1, k) = Z Z Z Z f (h/t)e bhlng)

st=d1 1<h<H/s mn3~Nj I€T;( h)
(n3,d1)=1 (l,d1)=

The inner sum is void unless s < H. Since H?> = o(d;) by (13.9) and (13.11), it follows,
by changing the order of summation, that

Qildi k)<Y > Y

st=d1 nz~Nj I€T;(H)
t>H (ng,dy)=1 (I,d1)=1

S /e (bhlig)|

heJ;(s,l)

where J;(s,1) is a certain interval of length < H and depending on s and [. Noting that,
by integration by parts,

d _ o
%f(z) < min {le,|z| 2]\71},

by partial summation and (13.10) we obtain
> f(h/t)es(bhing) < N{*min {H, ||bing/t]| ™},
heJ;(s,l)
It follows that

Qi(di, k) < NN %" > min {H, |[blng/t]| "}

tldl leT; (H) TL3<2N3
t>H (I,d1)=1 (n3,d1)=

Since H = o(N3) by (13.3) and (13.9), the innermost sum is < N; ¢ by Lemma 9. In
view of (13.6), this leads to
Qz(dh /’C) ¢ d%—’—ak’f‘Ng, (1314)
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We now introduce the parameter
K = [z7 /2782 N N, (13.15)

which is > 2'/87%6% by (13.2). By (A5) and the second inequality in (13.12), we see that
the right side of (13.14) is < x'"®* M~ if k < 2K. Hence, by (13.13), the proof of
(13.7) is reduced to showing that

1
= > N(di, k) < o' T=FEM (13.16)

k~K
14. The Type III estimate: Completion

The aim of this section is to prove (13.16) that will complete the proof of Theorem 2.
We start with the relation

h(ny + hkr) =1+ kr (mod d,)

for (h,d;) = (ny + hkr,d;) = 1, where | = hny (mod d;). Thus we may rewrite N (dy, k)

as
N(dy, k) = Z v(l;dy) Z eq, (b(L+ kr)ns)
l( mod dl) n32N§
(l+k7’,d1):1 (nS,dl):l
with o
v(lydy) = f(h/dy).
hna=l(d1)

Here Z/ is restriction to 1 < h < H, (h,d;) = 1 and ny ~ Nj. It follows by Cauchy’s
inequality that

2
> N(di, k)| < PP, (14.1)
kK
where
2
P = Z v (l;dy)?, Py = Z ‘ Z Z eq, (b(L+ kr)n)
I( mod d1) I( mod dy) k~K n~Nj

(l—i—kT’,dl):l (n,d1)=1
The estimation of Pj is straightforward. By (13.10) we have

P« N12 #{(hl,hg;nl,m) s hong = hlnz(mod dl), 1<h; < H, n; =~ é}
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The number of the 4-tuples (hq, ho;, nq,n2) satisfying the above conditions is

< Z ( > T(m)>2.

(mod dp) 1<m<2H Ny
mEl(dl)

Since HN, < d;¢ by (13.6), it follows that
P, < diteNY. (14.2)

The estimation of P, is more involved. We claim that

P2 < d1$3/16+52w+6K2. (14?))
Write d; = rq. Note that
NI
3y g 1/6-69= (14.4)
r

by (13.8), (13.11), (13.3) and the second inequality in (13.12). Since

Z ed, (b (I + kr)n Z Z ea, (b(l + kr)(nr + s)) + O(r),

n~NY 0<s<r n~Nji/r
(n,dq)=1 (5,7)=L (nr4s,q)=1

it follows that

Z > ea, (b + kr)n) = U(l) + O(Kr),

n~N4
(l+k7’7d1): (n,dl)zl

where
CY Y Y T RmE)
0<s<r  k~K n~Nj/r
(s,r)=1 (I+kr,d1)=1 (nr+s,q)=1
Hence,
Py Y UDP+di(Er). (145)
I( mod dy)

The second term on the right side is admissible for (14.3) by the second inequality in
(13.12). On the other hand, we have

SUOP=>" Y Y Y Vike—kiisis), (14.6)

I( mod dy) kEi~K ko~vK 0<s1<r 0<so<r
(s1,r)=1 (s2,r)=1

where

V(k; s1,82) = Z Z Z, eq, (bl(nir + s1) — b(l + kr)(nar + s2)).

n1~N§/r ng~Ng/r I(mod di)
(nar+s1,9)=1 (n2r+s2,q)=1
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Here Z/ is restriction to (I,dy) = (I + kr,dy) = 1.

To handle the right side of (14.6) we first note that if [ = l;7 + l,g(mod d; ), then the
condition (I(I + kr),d;) = 1 is equivalent to (I;(l; + k), q) = (lz,7) = 1. In this situation,
by the relation

1 r o q
—=_41 d1
=g + . (mod 1)
we have
l(nyr 4 s1) — (I 4 kr)(ner + s2)
dy
_ Ph(r 4 51) = 2L+ K)(nor + 55) | @2s15ala(s2 — 51) (mod 1).
q r

Thus the innermost sum in the expression for V' (k; sy, s2) is, by the Chinese remainder
theorem, equal to

Cr(s2 — 51) Z eq(br2l(nir + s1) — br2(L + k) (nar + s2)).

I( mod q)
(1(+k),q)=1

It follows that

V(k;Sl,SQ) = W(]{Z, Sl,Sg)CT(SQ - 81), (147)
where
/
W (k;s1,82) = Z Z Z eq(br2l(nir + s1) — br2(L + k) (nar + s2)).
ni~NL/r na~NL/r I( mod q)

(n1r+4s1,9)=1 (n2r+s2,q)=1

/!
Here Z is restriction to (I(l + k),q) = 1.
By virtue of (14.7), we estimate the contribution from the terms with k; = ks on the
right side of (14.6) as follows. For (nir + s1,q) = (ner + s2,q) = 1 we have

Z* eq(br2l(nar + s1) — br2l(nar + s2)) = Cy((n1 — n2)r + 51 — s2).

I( mod q)

On the other hand, since Nj < z'/3, by (13.11) and the second inequality in (13.12) we

have )

N
d—3 < g7 V16T 1 (14.8)
1

This implies N}/r = o(q), so that

Z |Cy(nr +m)| < ¢'*®

n~Ni/r
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for any m. It follows that
W(0; 51, 82) < ¢ er 13,

Inserting this into (14.7) and using the simple estimate

> Y C(sa— s <0

0<s1<r 0<s9<r

Z Z V(05 81, 82) < di N3,

0<s1<r 0<sa<r
(s1,7)=1 (s2,r)=1

It follows that the contribution from the terms with k; = k2 on the right side of (14.6) is
< di* K N3 which is admissible for (14.3), since

we deduce that

K71N3 < $1/2+48wa1 < x3/16+52w

by (13.15) and (13.2). The proof of (14.3) is therefore reduced to showing that

Z Z Z Z V(ky — ky; 51, 89) < dya®/16H527 e |2 (14.9)

ki~vK koK 0<si<r 0<so<r
ko#k1 (s1,r)=1 (s2,r)=1

In view of (14.4) and (14.8), letting
n' =min{n : n ~ Nj/r}, n' =max{n: n~ Nj/r},
we may rewrite W (k; sy, s2) as

W (k; s1,s9) = Z Z Z F(n1/q)F(n2/q)

n1<q n2<q I( mod q)
(nir+s1,9)=1 (nar+sa2,q)=1

x eq(br2l(nar + s1) — br2(L+ k) (nor + s2)),

where F(y) is a function of C?[0, 1] class such that

0< F(y) <1,
Fy)=1 if ﬁgygn—
q q
n' 1 n’ 1
F(y)=0 if y {———,,——1-—,
) ¢ qg 29 qg 2q

and such that the Fourier coefficient



satisfies

k(m) < #*(m) == min {1, x i}. (14.10)

r’ m|’ m?

Here we have used (14.8). By the Fourier expansion of F(y) we obtain

W (k; s1; s2) Z Z k(mq)k(me)Y (k;my, ma; sq, S2), (14.11)

mi1=—00 Ma=—00

where

/
Y (k;ma, ma; s1, 89) = Z Z Z eq(5(l,k;ml,mg;nl,n2;31,32))
n1<q n2<q [( mod q)
(nir+s1,9)=1 (nar+s2,q)=1
with

O(L, ks ma, ma;ny, ma; sty s2) = br2l(nar + s1) — or2 (L + k) (nar + s2) + ming + mano.
Moreover, if n;r + s; = t;(mod ¢), then n; = 7(t; — s;)(mod q), so that
miny + mang = 7(maty + maty) — 7(Mysy + mase)  (mod q).
Hence, on substituting n;r + s; = t;, we may rewrite Y (k;my, mo; s1, 52) as
Y (k;my, ma; sy, 82) = Z(k; ml,mg)eq( — 7(mys; + m282)), (14.12)
where

Z(k my, m2 Z Z Z €q bT'QZtl — br2(l + k)tg + r(mltl + m2t2))

t1(mod q)t2( mod ¢) I( mod q)

It follows from (14.7), (14.11) and (14.12) that

[e.e] [e.e]

DD Viksus) = > Y k(ma)r(me)Z(k;my,mo)J (my, mg), (14.13)

0<s1<r 0<s2<r m1=—00 Mo=—00
(s1,7)=1 (s2,r)=1

where

ml,mg Z Z eq m181 + mQSQ))CT(SQ — 81).

0<s1<r 0<sa2<r
(s1,7)=1 (s2,r)=1

We now appeal to Lemma 12. By simple substitution we have

Z(k;my,mq) = T(k, by 72, —bmai?; q),
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so Lemma 12 gives
Z(k;may, my) < (k,q)' /¢,

the right side being independent of m; and ms. On the other hand, we have the following
estimate that will be proved later

S KR (me)|J(my,ma)| < r'E (14.14)

Mm1=—00 Ma=—00
Combining these two estimates with (14.13) we obtain
Z Z V(k; 51, 80) < (K, q)'/2g>2ertte,
0<s1<r 0<sa<r
(s1,7)=1 (s2,r)=1

This leads to (14.9), since

V2 = (dy r)V? < /A2 = 316452
by the first inequality in (13.12), and

Z Z (k2 - kl?Q)l/z < qEK2>

ki~K ko~K
ko#k1

whence (14.3) follows.
The estimate (13.16) follows from (14.1)-(14.3) immediately, since

Ny < 23/3+8= -1 dy < z'/?2= % + 36w =1-— %

It remains to prove (14.14). The left side of (14.14) may be rewritten as

LYY Y e ns s Bl 1 )

mp=—00 mg=—00 0<k<r

In view of (14.10), we have

Z K*(m) < L,

m=—00

and k*(m + k) < k*(m) for 0 < k < r, since r < ¢ by (13.11) and the second inequality
in (13.12). Thus, in order to prove (14.14), it suffices to show that

D [T (ma,ma + k)| < 7t (14.15)

0<k<r

53



for any m; and ms.
Substituting so — s; = t and applying Mobius inversion we obtain

J(mq, ms) Z Cy(t Z eq( — 7(mat + (mq + my)s))
[t|<r sl

(s(s+t),r)=1

<Y lemy

[t|<r ri|r

(14.16)

Z eq(F(m1 +my)s)|,

sel
s(s+t)=0(r1)

where [; is a certain interval of length < r and depending on . For any ¢ and square-free
r1, there are exactly 7(r1/(t,r1)) distinct residue classes (mod r;) such that

s(s+t)=0 (modry)

if and only if s lies in one of these classes. On the other hand, if r = ryrs, then

Z eq(f(ml + mQ)S) < min {7’2, ||72(my + m2)/q|]*1}
s€l
s=a(r1)
for any a. Hence the inner sum on the right side of (14.16) is
< 7(r) Z min {ry, ||F2(m1 + m2)g|| ™'}
ro|r
which is independent of ¢. Together with the simple estimate
> lC@l < r(r)r,

[t|<r

this yields
J(m17m2 <<7' Zmln{rg, |T‘2 m1 + mao /QH 1}

ro|r

It follows that the left side of (14.15) is

< Y. Y ST min{ra, [[ra(my Fmg + ks + ko) /gl . (14.17)

rire=r 0<ki<r; 0<ko<ro

Assume rg|r. By the relation

—=—-——+4+— (modl1),
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for 0 < k < ry we have

Fo(m+k) _ Fam gk (1
4q q T2

This yields

> min {ry, |[Fa(m+ k) /ql| 7'} < oL (14.18)

0<k<rg

for any m. The estimate (14.15) follows from (14.17) and (14.18) immediately.
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